1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
## Copyright (C) 2000-2013 Paul Kienzle
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} cplxpair (@var{z})
## @deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol})
## @deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol}, @var{dim})
## Sort the numbers @var{z} into complex conjugate pairs ordered by
## increasing real part. Place the negative imaginary complex number
## first within each pair. Place all the real numbers (those with
## @code{abs (imag (@var{z}) / @var{z}) < @var{tol})}) after the
## complex pairs.
##
## If @var{tol} is unspecified the default value is 100*@code{eps}.
##
## By default the complex pairs are sorted along the first non-singleton
## dimension of @var{z}. If @var{dim} is specified, then the complex
## pairs are sorted along this dimension.
##
## Signal an error if some complex numbers could not be paired. Signal an
## error if all complex numbers are not exact conjugates (to within
## @var{tol}). Note that there is no defined order for pairs with identical
## real parts but differing imaginary parts.
## @c Set example in small font to prevent overfull line
##
## @smallexample
## cplxpair (exp(2i*pi*[0:4]'/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5)
## @end smallexample
## @end deftypefn
## FIXME: subsort returned pairs by imaginary magnitude
## FIXME: Why doesn't exp (2i*pi*[0:4]'/5) produce exact conjugates. Does
## FIXME: it in Matlab? The reason is that complex pairs are supposed
## FIXME: to be exact conjugates, and not rely on a tolerance test.
## 2006-05-12 David Bateman - Modified for NDArrays
function y = cplxpair (z, tol, dim)
if (nargin < 1 || nargin > 3)
print_usage ();
endif
if (length (z) == 0)
y = zeros (size (z));
return;
endif
if (nargin < 2 || isempty (tol))
if (isa (z, "single"))
tol = 100 * eps("single");
else
tol = 100*eps;
endif
endif
nd = ndims (z);
orig_dims = size (z);
if (nargin < 3)
## Find the first singleton dimension.
dim = 0;
while (dim < nd && orig_dims(dim+1) == 1)
dim++;
endwhile
dim++;
if (dim > nd)
dim = 1;
endif
else
dim = floor (dim);
if (dim < 1 || dim > nd)
error ("cplxpair: invalid dimension along which to sort");
endif
endif
## Move dimension to treat first, and convert to a 2-D matrix.
perm = [dim:nd, 1:dim-1];
z = permute (z, perm);
sz = size (z);
n = sz (1);
m = prod (sz) / n;
z = reshape (z, n, m);
## Sort the sequence in terms of increasing real values.
[q, idx] = sort (real (z), 1);
z = z(idx + n * ones (n, 1) * [0:m-1]);
## Put the purely real values at the end of the returned list.
cls = "double";
if (isa (z, "single"))
cls = "single";
endif
[idxi, idxj] = find (abs (imag (z)) ./ (abs (z) + realmin (cls)) < tol);
q = sparse (idxi, idxj, 1, n, m);
nr = sum (q, 1);
[q, idx] = sort (q, 1);
z = z(idx);
y = z;
## For each remaining z, place the value and its conjugate at the
## start of the returned list, and remove them from further
## consideration.
for j = 1:m
p = n - nr(j);
for i = 1:2:p
if (i+1 > p)
error ("cplxpair: could not pair all complex numbers");
endif
[v, idx] = min (abs (z(i+1:p) - conj (z(i))));
if (v > tol)
error ("cplxpair: could not pair all complex numbers");
endif
if (imag (z(i)) < 0)
y([i, i+1]) = z([i, idx+i]);
else
y([i, i+1]) = z([idx+i, i]);
endif
z(idx+i) = z(i+1);
endfor
endfor
## Reshape the output matrix.
y = ipermute (reshape (y, sz), perm);
endfunction
%!demo
%! [ cplxpair(exp(2i*pi*[0:4]'/5)), exp(2i*pi*[3; 2; 4; 1; 0]/5) ]
%!assert (isempty (cplxpair ([])))
%!assert (cplxpair (1), 1)
%!assert (cplxpair ([1+1i, 1-1i]), [1-1i, 1+1i])
%!assert (cplxpair ([1+1i, 1+1i, 1, 1-1i, 1-1i, 2]), ...
%! [1-1i, 1+1i, 1-1i, 1+1i, 1, 2])
%!assert (cplxpair ([1+1i; 1+1i; 1; 1-1i; 1-1i; 2]), ...
%! [1-1i; 1+1i; 1-1i; 1+1i; 1; 2])
%!assert (cplxpair ([0, 1, 2]), [0, 1, 2])
%!shared z
%! z = exp (2i*pi*[4; 3; 5; 2; 6; 1; 0]/7);
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair ([z(randperm(7)),z(randperm(7))]), [z,z])
%!assert (cplxpair ([z(randperm(7)),z(randperm(7))],[],1), [z,z])
%!assert (cplxpair ([z(randperm(7)).';z(randperm(7)).'],[],2), [z.';z.'])
## tolerance test
%!assert (cplxpair ([1i, -1i, 1+(1i*eps)],2*eps), [-1i, 1i, 1+(1i*eps)])
|