File: cplxpair.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (166 lines) | stat: -rw-r--r-- 5,230 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
## Copyright (C) 2000-2013 Paul Kienzle
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} cplxpair (@var{z})
## @deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol})
## @deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol}, @var{dim})
## Sort the numbers @var{z} into complex conjugate pairs ordered by
## increasing real part.  Place the negative imaginary complex number
## first within each pair.  Place all the real numbers (those with
## @code{abs (imag (@var{z}) / @var{z}) < @var{tol})}) after the
## complex pairs.
##
## If @var{tol} is unspecified the default value is 100*@code{eps}.
##
## By default the complex pairs are sorted along the first non-singleton
## dimension of @var{z}.  If @var{dim} is specified, then the complex
## pairs are sorted along this dimension.
##
## Signal an error if some complex numbers could not be paired.  Signal an
## error if all complex numbers are not exact conjugates (to within
## @var{tol}).  Note that there is no defined order for pairs with identical
## real parts but differing imaginary parts.
## @c Set example in small font to prevent overfull line
##
## @smallexample
## cplxpair (exp(2i*pi*[0:4]'/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5)
## @end smallexample
## @end deftypefn

## FIXME: subsort returned pairs by imaginary magnitude
## FIXME: Why doesn't exp (2i*pi*[0:4]'/5) produce exact conjugates.  Does
## FIXME: it in Matlab?  The reason is that complex pairs are supposed
## FIXME: to be exact conjugates, and not rely on a tolerance test.

## 2006-05-12 David Bateman - Modified for NDArrays

function y = cplxpair (z, tol, dim)

  if (nargin < 1 || nargin > 3)
    print_usage ();
  endif

  if (length (z) == 0)
    y = zeros (size (z));
    return;
  endif

  if (nargin < 2 || isempty (tol))
    if (isa (z, "single"))
      tol = 100 * eps("single");
    else
      tol = 100*eps;
    endif
  endif

  nd = ndims (z);
  orig_dims = size (z);
  if (nargin < 3)
    ## Find the first singleton dimension.
    dim = 0;
    while (dim < nd && orig_dims(dim+1) == 1)
      dim++;
    endwhile
    dim++;
    if (dim > nd)
      dim = 1;
    endif
  else
    dim = floor (dim);
    if (dim < 1 || dim > nd)
      error ("cplxpair: invalid dimension along which to sort");
    endif
  endif

  ## Move dimension to treat first, and convert to a 2-D matrix.
  perm = [dim:nd, 1:dim-1];
  z = permute (z, perm);
  sz = size (z);
  n = sz (1);
  m = prod (sz) / n;
  z = reshape (z, n, m);

  ## Sort the sequence in terms of increasing real values.
  [q, idx] = sort (real (z), 1);
  z = z(idx + n * ones (n, 1) * [0:m-1]);

  ## Put the purely real values at the end of the returned list.
  cls = "double";
  if (isa (z, "single"))
    cls = "single";
  endif
  [idxi, idxj] = find (abs (imag (z)) ./ (abs (z) + realmin (cls)) < tol);
  q = sparse (idxi, idxj, 1, n, m);
  nr = sum (q, 1);
  [q, idx] = sort (q, 1);
  z = z(idx);
  y = z;

  ## For each remaining z, place the value and its conjugate at the
  ## start of the returned list, and remove them from further
  ## consideration.
  for j = 1:m
    p = n - nr(j);
    for i = 1:2:p
      if (i+1 > p)
        error ("cplxpair: could not pair all complex numbers");
      endif
      [v, idx] = min (abs (z(i+1:p) - conj (z(i))));
      if (v > tol)
        error ("cplxpair: could not pair all complex numbers");
      endif
      if (imag (z(i)) < 0)
        y([i, i+1]) = z([i, idx+i]);
      else
        y([i, i+1]) = z([idx+i, i]);
      endif
      z(idx+i) = z(i+1);
    endfor
  endfor

  ## Reshape the output matrix.
  y = ipermute (reshape (y, sz), perm);

endfunction


%!demo
%! [ cplxpair(exp(2i*pi*[0:4]'/5)), exp(2i*pi*[3; 2; 4; 1; 0]/5) ]

%!assert (isempty (cplxpair ([])))
%!assert (cplxpair (1), 1)
%!assert (cplxpair ([1+1i, 1-1i]), [1-1i, 1+1i])
%!assert (cplxpair ([1+1i, 1+1i, 1, 1-1i, 1-1i, 2]), ...
%!                  [1-1i, 1+1i, 1-1i, 1+1i, 1, 2])
%!assert (cplxpair ([1+1i; 1+1i; 1; 1-1i; 1-1i; 2]), ...
%!                  [1-1i; 1+1i; 1-1i; 1+1i; 1; 2])
%!assert (cplxpair ([0, 1, 2]), [0, 1, 2])

%!shared z
%! z = exp (2i*pi*[4; 3; 5; 2; 6; 1; 0]/7);
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair ([z(randperm(7)),z(randperm(7))]), [z,z])
%!assert (cplxpair ([z(randperm(7)),z(randperm(7))],[],1), [z,z])
%!assert (cplxpair ([z(randperm(7)).';z(randperm(7)).'],[],2), [z.';z.'])

## tolerance test
%!assert (cplxpair ([1i, -1i, 1+(1i*eps)],2*eps), [-1i, 1i, 1+(1i*eps)])