File: del2.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (160 lines) | stat: -rw-r--r-- 4,683 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
## Copyright (C) 2000-2013 Kai Habel
## Copyright (C) 2007  David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{d} =} del2 (@var{M})
## @deftypefnx {Function File} {@var{d} =} del2 (@var{M}, @var{h})
## @deftypefnx {Function File} {@var{d} =} del2 (@var{M}, @var{dx}, @var{dy}, @dots{})
##
## Calculate the discrete Laplace
## @tex
## operator $( \nabla^2 )$.
## @end tex
## @ifnottex
## operator.
## @end ifnottex
## For a 2-dimensional matrix @var{M} this is defined as
## @tex
## $$d = {1 \over 4} \left( {d^2 \over dx^2} M(x,y) + {d^2 \over dy^2} M(x,y) \right)$$
## @end tex
## @ifnottex
##
## @example
## @group
##       1    / d^2            d^2         \
## D  = --- * | ---  M(x,y) +  ---  M(x,y) |
##       4    \ dx^2           dy^2        /
## @end group
## @end example
##
## @end ifnottex
## For N-dimensional arrays the sum in parentheses is expanded to include second
## derivatives over the additional higher dimensions.
##
## The spacing between evaluation points may be defined by @var{h}, which is a
## scalar defining the equidistant spacing in all dimensions.  Alternatively,
## the spacing in each dimension may be defined separately by @var{dx},
## @var{dy}, etc.  A scalar spacing argument defines equidistant spacing,
## whereas a vector argument can be used to specify variable spacing.  The
## length of the spacing vectors must match the respective dimension of
## @var{M}.  The default spacing value is 1.
##
## At least 3 data points are needed for each dimension.  Boundary points are
## calculated from the linear extrapolation of interior points.
##
## @seealso{gradient, diff}
## @end deftypefn

## Author:  Kai Habel <kai.habel@gmx.de>

function D = del2 (M, varargin)

  if (nargin < 1)
    print_usage ();
  endif

  nd = ndims (M);
  sz = size (M);
  dx = cell (1, nd);
  if (nargin == 2 || nargin == 1)
    if (nargin == 1)
      h = 1;
    else
      h = varargin{1};
    endif
    for i = 1 : nd
      if (isscalar (h))
        dx{i} = h * ones (sz (i), 1);
      else
        if (length (h) == sz (i))
          dx{i} = diff (h)(:);
        else
          error ("del2: dimensionality mismatch in %d-th spacing vector", i);
        endif
      endif
    endfor
  elseif (nargin - 1 == nd)
    ## Reverse dx{1} and dx{2} as the X-dim is the 2nd dim of the ND array
    tmp = varargin{1};
    varargin{1} = varargin{2};
    varargin{2} = tmp;

    for i = 1 : nd
      if (isscalar (varargin{i}))
        dx{i} = varargin{i} * ones (sz (i), 1);
      else
        if (length (varargin{i}) == sz (i))
          dx{i} = diff (varargin{i})(:);
        else
          error ("del2: dimensionality mismatch in %d-th spacing vector", i);
        endif
      endif
    endfor
  else
    print_usage ();
  endif

  idx = cell (1, nd);
  for i = 1: nd
    idx{i} = ":";
  endfor

  D = zeros (sz);
  for i = 1: nd
    if (sz(i) >= 3)
      DD = zeros (sz);
      idx1 = idx2 = idx3 = idx;

      ## interior points
      idx1{i} = 1 : sz(i) - 2;
      idx2{i} = 2 : sz(i) - 1;
      idx3{i} = 3 : sz(i);
      szi = sz;
      szi (i) = 1;

      h1 = repmat (shiftdim (dx{i}(1 : sz(i) - 2), 1 - i), szi);
      h2 = repmat (shiftdim (dx{i}(2 : sz(i) - 1), 1 - i), szi);
      DD(idx2{:}) = ((M(idx1{:}) - M(idx2{:})) ./ h1 + ...
                     (M(idx3{:}) - M(idx2{:})) ./ h2) ./ (h1 + h2);

      ## left and right boundary
      if (sz(i) == 3)
        DD(idx1{:}) = DD(idx3{:}) = DD(idx2{:});
      else
        idx1{i} = 1;
        idx2{i} = 2;
        idx3{i} = 3;
        DD(idx1{:}) = (dx{i}(1) + dx{i}(2)) / dx{i}(2) * DD (idx2{:}) - ...
            dx{i}(1) / dx{i}(2) * DD (idx3{:});

        idx1{i} = sz(i);
        idx2{i} = sz(i) - 1;
        idx3{i} = sz(i) - 2;
        DD(idx1{:}) =  (dx{i}(sz(i) - 1) + dx{i}(sz(i) - 2)) / ...
            dx{i}(sz(i) - 2) * DD (idx2{:}) - ...
            dx{i}(sz(i) - 1) / dx{i}(sz(i) - 2) * DD (idx3{:});
      endif

      D += DD;
    endif
  endfor

  D = D ./ nd;
endfunction