File: interp1.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (649 lines) | stat: -rw-r--r-- 22,980 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
## Copyright (C) 2000-2013 Paul Kienzle
## Copyright (C) 2009 VZLU Prague
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{yi} =} interp1 (@var{x}, @var{y}, @var{xi})
## @deftypefnx {Function File} {@var{yi} =} interp1 (@var{y}, @var{xi})
## @deftypefnx {Function File} {@var{yi} =} interp1 (@dots{}, @var{method})
## @deftypefnx {Function File} {@var{yi} =} interp1 (@dots{}, @var{extrap})
## @deftypefnx {Function File} {@var{yi} =} interp1 (@dots{}, "left")
## @deftypefnx {Function File} {@var{yi} =} interp1 (@dots{}, "right")
## @deftypefnx {Function File} {@var{pp} =} interp1 (@dots{}, "pp")
##
## One-dimensional interpolation.
##
## Interpolate input data to determine the value of @var{yi} at the points
## @var{xi}.  If not specified, @var{x} is taken to be the indices of @var{y}.
## If @var{y} is a matrix or an N-dimensional array, the interpolation is
## performed on each column of @var{y}.
##
## Method is one of:
##
## @table @asis
## @item @qcode{"nearest"}
## Return the nearest neighbor
##
## @item @qcode{"linear"}
## Linear interpolation from nearest neighbors
##
## @item @qcode{"pchip"}
## Piecewise cubic Hermite interpolating polynomial
##
## @item @qcode{"cubic"}
## Cubic interpolation (same as @code{pchip})
##
## @item @qcode{"spline"}
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve
## @end table
##
## Adding '*' to the start of any method above forces @code{interp1}
## to assume that @var{x} is uniformly spaced, and only @code{@var{x}(1)}
## and @code{@var{x}(2)} are referenced.  This is usually faster,
## and is never slower.  The default method is @qcode{"linear"}.
##
## If @var{extrap} is the string @qcode{"extrap"}, then extrapolate values
## beyond the endpoints using the current @var{method}.  If @var{extrap} is a
## number, then replace values beyond the endpoints with that number.  When
## unspecified, @var{extrap} defaults to NA.
##
## If the string argument @qcode{"pp"} is specified, then @var{xi} should not
## be supplied and @code{interp1} returns a piecewise polynomial object.  This 
## object can later be used with @code{ppval} to evaluate the interpolation.
## There is an equivalence, such that @code{ppval (interp1 (@var{x},
## @var{y}, @var{method}, @qcode{"pp"}), @var{xi}) == interp1 (@var{x}, @var{y},
## @var{xi}, @var{method}, @qcode{"extrap"})}.
##
## Duplicate points in @var{x} specify a discontinuous interpolant.  There
## may be at most 2 consecutive points with the same value.
## If @var{x} is increasing, the default discontinuous interpolant is
## right-continuous.  If @var{x} is decreasing, the default discontinuous
## interpolant is left-continuous.
## The continuity condition of the interpolant may be specified by using
## the options, @qcode{"left"} or @qcode{"right"}, to select a left-continuous
## or right-continuous interpolant, respectively.
## Discontinuous interpolation is only allowed for @qcode{"nearest"} and
## @qcode{"linear"} methods; in all other cases, the @var{x}-values must be
## unique.
##
## An example of the use of @code{interp1} is
##
## @example
## @group
## xf = [0:0.05:10];
## yf = sin (2*pi*xf/5);
## xp = [0:10];
## yp = sin (2*pi*xp/5);
## lin = interp1 (xp, yp, xf);
## spl = interp1 (xp, yp, xf, "spline");
## cub = interp1 (xp, yp, xf, "cubic");
## near = interp1 (xp, yp, xf, "nearest");
## plot (xf, yf, "r", xf, lin, "g", xf, spl, "b",
##       xf, cub, "c", xf, near, "m", xp, yp, "r*");
## legend ("original", "linear", "spline", "cubic", "nearest");
## @end group
## @end example
##
## @seealso{interpft, interp2, interp3, interpn}
## @end deftypefn

## Author: Paul Kienzle
## Date: 2000-03-25
##    added 'nearest' as suggested by Kai Habel
## 2000-07-17 Paul Kienzle
##    added '*' methods and matrix y
##    check for proper table lengths
## 2002-01-23 Paul Kienzle
##    fixed extrapolation

function yi = interp1 (x, y, varargin)

  if (nargin < 2 || nargin > 6)
    print_usage ();
  endif

  method = "linear";
  extrap = NA;
  xi = [];
  ispp = false;
  firstnumeric = true;
  rightcontinuous = NaN;

  if (nargin > 2)
    for i = 1:length (varargin)
      arg = varargin{i};
      if (ischar (arg))
        arg = tolower (arg);
        if (strcmp ("extrap", arg))
          extrap = "extrap";
        elseif (strcmp ("pp", arg))
          ispp = true;
        elseif (strcmp (arg, "right") || strcmp (arg, "-right"))
          rightcontinuous = true;
        elseif (strcmp (arg, "left") || strcmp (arg, "-left"))
          rightcontinuous = false;
        else
          method = arg;
        endif
      else
        if (firstnumeric)
          xi = arg;
          firstnumeric = false;
        else
          extrap = arg;
        endif
      endif
    endfor
  endif

  if (isempty (xi) && firstnumeric && ! ispp)
    xi = y;
    y = x;
    if (isvector (y))
      x = 1:numel (y);
    else
      x = 1:rows (y);
    endif
  endif

  ## reshape matrices for convenience
  x = x(:);
  nx = rows (x);
  szx = size (xi);
  if (isvector (y))
    y = y(:);
  endif

  szy = size (y);
  y = y(:,:);
  [ny, nc] = size (y);
  xi = xi(:);

  ## determine sizes
  if (nx < 2 || ny < 2)
    error ("interp1: table too short");
  endif

  ## check whether x is sorted; sort if not.
  if (! issorted (x, "either"))
    [x, p] = sort (x);
    y = y(p,:);
  endif

  if (isnan (rightcontinuous))
    ## If not specified, set the continuity condition
    if (x(end) < x(1))
      rightcontinuous = false;
    else
      rightcontinuous = true;
    endif
  endif

  if ((rightcontinuous && (x(end) < x(1)))
      || (! rightcontinuous && (x(end) > x(1))))
    ## Switch between left-continuous and right-continuous
    x = flipud (x);
    y = flipud (y);
  endif

  starmethod = method(1) == "*";

  if (starmethod)
    dx = x(2) - x(1);
  else
    jumps = x(1:end-1) == x(2:end);
    have_jumps = any (jumps);
    if (have_jumps)
      if (strcmp (method, "linear") || strcmp (method, ("nearest")))
        if (any (jumps(1:nx-2) & jumps(2:nx-1)))
          warning ("interp1: multiple discontinuities at the same X value");
        endif
      else
        error ("interp1: discontinuities not supported for method '%s'", method);
      endif
    endif
  endif

  ## Proceed with interpolating by all methods.
  switch (method)

    case "nearest"
      pp = mkpp ([x(1); (x(1:nx-1)+x(2:nx))/2; x(nx)],
                 shiftdim (y, 1), szy(2:end));
      pp.orient = "first";

      if (ispp)
        yi = pp;
      else
        yi = ppval (pp, reshape (xi, szx));
      endif

    case "*nearest"
      pp = mkpp ([x(1), x(1)+[0.5:(nx-1)]*dx, x(nx)],
                 shiftdim (y, 1), szy(2:end));
      pp.orient = "first";
      if (ispp)
        yi = pp;
      else
        yi = ppval (pp, reshape (xi, szx));
      endif

    case "linear"

      xx = x;
      nxx = nx;
      yy = y;
      dy = diff (yy);
      if (have_jumps)
        ## Omit zero-size intervals.
        xx(jumps) = [];
        nxx = rows (xx);
        yy(jumps, :) = [];
        dy(jumps, :) = [];
      endif

      dx = diff (xx);
      dx = repmat (dx, [1 size(dy)(2:end)]);

      coefs = [(dy./dx).', yy(1:nxx-1, :).'];

      pp = mkpp (xx, coefs, szy(2:end));
      pp.orient = "first";

      if (ispp)
        yi = pp;
      else
        yi = ppval (pp, reshape (xi, szx));
      endif

    case "*linear"
      dy = diff (y);
      coefs = [(dy/dx).'(:), y(1:nx-1, :).'(:)];
      pp = mkpp (x, coefs, szy(2:end));
      pp.orient = "first";

      if (ispp)
        yi = pp;
      else
        yi = ppval (pp, reshape (xi, szx));
      endif

    case {"pchip", "*pchip", "cubic", "*cubic"}
      if (nx == 2 || starmethod)
        x = linspace (x(1), x(nx), ny);
      endif

      if (ispp)
        y = shiftdim (reshape (y, szy), 1);
        yi = pchip (x, y);
        yi.orient = "first";
      else
        y = shiftdim (y, 1);
        yi = pchip (x, y, reshape (xi, szx));
        if (! isvector (y))
          yi = shiftdim (yi, 1);
        endif
      endif

    case {"spline", "*spline"}
      if (nx == 2 || starmethod)
        x = linspace (x(1), x(nx), ny);
      endif

      if (ispp)
        y = shiftdim (reshape (y, szy), 1);
        yi = spline (x, y);
        yi.orient = "first";
      else
        y = shiftdim (y, 1);
        yi = spline (x, y, reshape (xi, szx));
        if (! isvector (y))
          yi = shiftdim (yi, 1);
        endif
      endif

    otherwise
      error ("interp1: invalid method '%s'", method);

  endswitch

  if (! ispp && ! ischar (extrap))
    ## determine which values are out of range and set them to extrap,
    ## unless extrap == "extrap".
    minx = min (x(1), x(nx));
    maxx = max (x(1), x(nx));

    outliers = xi < minx | ! (xi <= maxx); # this even catches NaNs
    if (size_equal (outliers, yi))
      yi(outliers) = extrap;
      yi = reshape (yi, szx);
    elseif (! isvector (yi))
      yi(outliers, :) = extrap;
    else
      yi(outliers.') = extrap;
    endif
  endif

endfunction


%!demo
%! clf;
%! xf = 0:0.05:10;  yf = sin (2*pi*xf/5);
%! xp = 0:10;       yp = sin (2*pi*xp/5);
%! lin = interp1 (xp,yp,xf, "linear");
%! spl = interp1 (xp,yp,xf, "spline");
%! cub = interp1 (xp,yp,xf, "pchip");
%! near= interp1 (xp,yp,xf, "nearest");
%! plot (xf,yf,"r",xf,near,"g",xf,lin,"b",xf,cub,"c",xf,spl,"m",xp,yp,"r*");
%! legend ("original", "nearest", "linear", "pchip", "spline");
%! %--------------------------------------------------------
%! % confirm that interpolated function matches the original

%!demo
%! clf;
%! xf = 0:0.05:10;  yf = sin (2*pi*xf/5);
%! xp = 0:10;       yp = sin (2*pi*xp/5);
%! lin = interp1 (xp,yp,xf, "*linear");
%! spl = interp1 (xp,yp,xf, "*spline");
%! cub = interp1 (xp,yp,xf, "*cubic");
%! near= interp1 (xp,yp,xf, "*nearest");
%! plot (xf,yf,"r",xf,near,"g",xf,lin,"b",xf,cub,"c",xf,spl,"m",xp,yp,"r*");
%! legend ("*original", "*nearest", "*linear", "*cubic", "*spline");
%! %--------------------------------------------------------
%! % confirm that interpolated function matches the original

%!demo
%! clf;
%! t = 0 : 0.3 : pi; dt = t(2)-t(1);
%! n = length (t); k = 100; dti = dt*n/k;
%! ti = t(1) + [0 : k-1]*dti;
%! y = sin (4*t + 0.3) .* cos (3*t - 0.1);
%! ddyc = diff (diff (interp1 (t,y,ti, "cubic")) ./dti)./dti;
%! ddys = diff (diff (interp1 (t,y,ti, "spline"))./dti)./dti;
%! ddyp = diff (diff (interp1 (t,y,ti, "pchip")) ./dti)./dti;
%! plot (ti(2:end-1),ddyc,'g+', ti(2:end-1),ddys,'b*', ti(2:end-1),ddyp,'c^');
%! legend ("cubic", "spline", "pchip");
%! title ("Second derivative of interpolated 'sin (4*t + 0.3) .* cos (3*t - 0.1)'");

%!demo
%! clf;
%! xf = 0:0.05:10;                yf = sin (2*pi*xf/5) - (xf >= 5);
%! xp = [0:.5:4.5,4.99,5:.5:10];  yp = sin (2*pi*xp/5) - (xp >= 5);
%! lin = interp1 (xp,yp,xf, "linear");
%! near= interp1 (xp,yp,xf, "nearest");
%! plot (xf,yf,"r", xf,near,"g", xf,lin,"b", xp,yp,"r*");
%! legend ("original", "nearest", "linear");
%! %--------------------------------------------------------
%! % confirm that interpolated function matches the original

%!demo
%! clf;
%! x = 0:0.5:3;
%! x1 = [3 2 2 1];
%! x2 = [1 2 2 3];
%! y1 = [1 1 0 0];
%! y2 = [0 0 1 1];
%! h = plot (x, interp1 (x1, y1, x), 'b', x1, y1, 'sb');
%! hold on
%! g = plot (x, interp1 (x2, y2, x), 'r', x2, y2, '*r');
%! axis ([0.5 3.5 -0.5 1.5])
%! legend ([h(1), g(1)], {'left-continuous', 'right-continuous'}, ...
%!         'location', 'northwest')
%! legend boxoff
%! %--------------------------------------------------------
%! % red curve is left-continuous and blue is right-continuous at x = 2

##FIXME: add test for n-d arguments here

## For each type of interpolated test, confirm that the interpolated
## value at the knots match the values at the knots.  Points away
## from the knots are requested, but only "nearest" and "linear"
## confirm they are the correct values.

%!shared xp, yp, xi, style
%! xp = 0:2:10;
%! yp = sin (2*pi*xp/5);
%! xi = [-1, 0, 2.2, 4, 6.6, 10, 11];

## The following BLOCK/ENDBLOCK section is repeated for each style
##    nearest, linear, cubic, spline, pchip
## The test for ppval of cubic has looser tolerance, but otherwise
## the tests are identical.
## Note that the block checks style and *style; if you add more tests
## be sure to add them to both sections of each block.  One test,
## style vs. *style, occurs only in the first section.
## There is an ENDBLOCKTEST after the final block

%!test style = "nearest";
## BLOCK
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
%!assert (interp1 (xp,[yp',yp'],xi,style),
%!        interp1 (xp,[yp',yp'],xi,["*",style]),100*eps)
%!test style = ["*",style];
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
## ENDBLOCK

%!test style = "linear";
## BLOCK
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
%!assert (interp1 (xp,[yp',yp'],xi,style),
%!        interp1 (xp,[yp',yp'],xi,["*",style]),100*eps)
%!test style = ['*',style];
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!assert (interp1 ([1 2 2 3], [1 2 3 4], 2), 3);
%!assert (interp1 ([3 2 2 1], [4 3 2 1], 2), 2);
%!error interp1 (1,1,1, style)
## ENDBLOCK

%!test style = "cubic";
## BLOCK
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),100*eps)
%!error interp1 (1,1,1, style)
%!assert (interp1 (xp,[yp',yp'],xi,style),
%!        interp1 (xp,[yp',yp'],xi,["*",style]),100*eps)
%!test style = ["*",style];
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),100*eps)
%!error interp1 (1,1,1, style)
## ENDBLOCK

%!test style = "pchip";
## BLOCK
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
%!assert (interp1 (xp,[yp',yp'],xi,style),
%!        interp1 (xp,[yp',yp'],xi,["*",style]),100*eps)
%!test style = ["*",style];
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
## ENDBLOCK

%!test style = "spline";
## BLOCK
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
%!assert (interp1 (xp,[yp',yp'],xi,style),
%!        interp1 (xp,[yp',yp'],xi,["*",style]),100*eps)
%!test style = ["*",style];
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
## ENDBLOCK
## ENDBLOCKTEST

## test extrapolation (linear)
%!assert (interp1 ([1:5],[3:2:11],[0,6],"linear","extrap"), [1, 13], eps)
%!assert (interp1 (xp, yp, [-1, max(xp)+1],"linear",5), [5, 5])

## Basic sanity checks
%!assert (interp1 (1:2,1:2,1.4,"nearest"), 1)
%!assert (interp1 (1:2,1:2,1.4,"linear"), 1.4)
%!assert (interp1 (1:4,1:4,1.4,"cubic"), 1.4)
%!assert (interp1 (1:2,1:2,1.1,"spline"), 1.1)
%!assert (interp1 (1:3,1:3,1.4,"spline"), 1.4)

%!assert (interp1 (1:2:4,1:2:4,1.4,"*nearest"), 1)
%!assert (interp1 (1:2:4,1:2:4,[0,1,1.4,3,4],"*linear"), [NA,1,1.4,3,NA])
%!assert (interp1 (1:2:8,1:2:8,1.4,"*cubic"), 1.4)
%!assert (interp1 (1:2,1:2,1.3, "*spline"), 1.3)
%!assert (interp1 (1:2:6,1:2:6,1.4,"*spline"), 1.4)

%!assert (interp1 ([3,2,1],[3,2,2],2.5), 2.5)

%!assert (interp1 ([4,4,3,2,0],[0,1,4,2,1],[1.5,4,4.5], "linear"), [1.75,1,NA])
%!assert (interp1 (0:4, 2.5), 1.5)

## Left and Right discontinuities
%!assert (interp1 ([1,2,2,3,4],[0,1,4,2,1],[-1,1.5,2,2.5,3.5], "linear", "extrap", "right"), [-2,0.5,4,3,1.5])
%!assert (interp1 ([1,2,2,3,4],[0,1,4,2,1],[-1,1.5,2,2.5,3.5], "linear", "extrap", "left"), [-2,0.5,1,3,1.5])

%% Test input validation
%!error interp1 ()
%!error interp1 (1,2,3,4,5,6,7)
%!error <table too short> interp1 (1,1,1, "linear")
%!error <table too short> interp1 (1,1,1, "*nearest")
%!error <table too short> interp1 (1,1,1, "*linear")
%!warning <multiple discontinuities> interp1 ([1 1 1 2], [1 2 3 4], 1);
%!error <discontinuities not supported> interp1 ([1 1],[1 2],1, "pchip")
%!error <discontinuities not supported> interp1 ([1 1],[1 2],1, "cubic")
%!error <discontinuities not supported> interp1 ([1 1],[1 2],1, "spline")
%!error <invalid method> interp1 (1:2,1:2,1, "bogus")