1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
|
## Copyright (C) 2000-2013 Kai Habel
## Copyright (C) 2009 Jaroslav Hajek
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{zi} =} interp2 (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi})
## @deftypefnx {Function File} {@var{zi} =} interp2 (@var{Z}, @var{xi}, @var{yi})
## @deftypefnx {Function File} {@var{zi} =} interp2 (@var{Z}, @var{n})
## @deftypefnx {Function File} {@var{zi} =} interp2 (@dots{}, @var{method})
## @deftypefnx {Function File} {@var{zi} =} interp2 (@dots{}, @var{method}, @var{extrapval})
##
## Two-dimensional interpolation. @var{x}, @var{y} and @var{z} describe a
## surface function. If @var{x} and @var{y} are vectors their length
## must correspondent to the size of @var{z}. @var{x} and @var{y} must be
## monotonic. If they are matrices they must have the @code{meshgrid}
## format.
##
## @table @code
## @item interp2 (@var{x}, @var{y}, @var{Z}, @var{xi}, @var{yi}, @dots{})
## Returns a matrix corresponding to the points described by the
## matrices @var{xi}, @var{yi}.
##
## If the last argument is a string, the interpolation method can
## be specified. The method can be @qcode{"linear"}, @qcode{"nearest"} or
## @qcode{"cubic"}. If it is omitted @qcode{"linear"} interpolation is
## assumed.
##
## @item interp2 (@var{z}, @var{xi}, @var{yi})
## Assumes @code{@var{x} = 1:rows (@var{z})} and @code{@var{y} =
## 1:columns (@var{z})}
##
## @item interp2 (@var{z}, @var{n})
## Interleaves the matrix @var{z} n-times. If @var{n} is omitted a value
## of @code{@var{n} = 1} is assumed.
## @end table
##
## The variable @var{method} defines the method to use for the
## interpolation. It can take one of the following values
##
## @table @asis
## @item @qcode{"nearest"}
## Return the nearest neighbor.
##
## @item @qcode{"linear"}
## Linear interpolation from nearest neighbors.
##
## @item @qcode{"pchip"}
## Piecewise cubic Hermite interpolating polynomial.
##
## @item @qcode{"cubic"}
## Cubic interpolation from four nearest neighbors.
##
## @item @qcode{"spline"}
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## If a scalar value @var{extrapval} is defined as the final value, then
## values outside the mesh as set to this value. Note that in this case
## @var{method} must be defined as well. If @var{extrapval} is not
## defined then NA is assumed.
##
## @seealso{interp1}
## @end deftypefn
## Author: Kai Habel <kai.habel@gmx.de>
## 2005-03-02 Thomas Weber <weber@num.uni-sb.de>
## * Add test cases
## 2005-03-02 Paul Kienzle <pkienzle@users.sf.net>
## * Simplify
## 2005-04-23 Dmitri A. Sergatskov <dasergatskov@gmail.com>
## * Modified demo and test for new gnuplot interface
## 2005-09-07 Hoxide <hoxide_dirac@yahoo.com.cn>
## * Add bicubic interpolation method
## * Fix the eat line bug when the last element of XI or YI is
## negative or zero.
## 2005-11-26 Pierre Baldensperger <balden@libertysurf.fr>
## * Rather big modification (XI,YI no longer need to be
## "meshgridded") to be consistent with the help message
## above and for compatibility.
function ZI = interp2 (varargin)
Z = X = Y = XI = YI = n = [];
method = "linear";
extrapval = NA;
switch (nargin)
case 1
Z = varargin{1};
n = 1;
case 2
if (ischar (varargin{2}))
[Z, method] = deal (varargin{:});
n = 1;
else
[Z, n] = deal (varargin{:});
endif
case 3
if (ischar (varargin{3}))
[Z, n, method] = deal (varargin{:});
else
[Z, XI, YI] = deal (varargin{:});
endif
case 4
if (ischar (varargin{4}))
[Z, XI, YI, method] = deal (varargin{:});
else
[Z, n, method, extrapval] = deal (varargin{:});
endif
case 5
if (ischar (varargin{4}))
[Z, XI, YI, method, extrapval] = deal (varargin{:});
else
[X, Y, Z, XI, YI] = deal (varargin{:});
endif
case 6
[X, Y, Z, XI, YI, method] = deal (varargin{:});
case 7
[X, Y, Z, XI, YI, method, extrapval] = deal (varargin{:});
otherwise
print_usage ();
endswitch
## Type checking.
if (!ismatrix (Z))
error ("interp2: Z must be a matrix");
endif
if (!isempty (n) && !isscalar (n))
error ("interp2: N must be a scalar");
endif
if (!ischar (method))
error ("interp2: METHOD must be a string");
endif
if (ischar (extrapval) || strcmp (extrapval, "extrap"))
extrapval = [];
elseif (!isscalar (extrapval))
error ("interp2: EXTRAPVAL must be a scalar");
endif
## Define X, Y, XI, YI if needed
[zr, zc] = size (Z);
if (isempty (X))
X = 1:zc;
Y = 1:zr;
endif
if (! isnumeric (X) || ! isnumeric (Y))
error ("interp2: X, Y must be numeric matrices");
endif
if (! isempty (n))
## Calculate the interleaved input vectors.
p = 2^n;
XI = (p:p*zc)/p;
YI = (p:p*zr)'/p;
endif
if (! isnumeric (XI) || ! isnumeric (YI))
error ("interp2: XI, YI must be numeric");
endif
if (strcmp (method, "linear") || strcmp (method, "nearest") ...
|| strcmp (method, "pchip"))
## If X and Y vectors produce a grid from them
if (isvector (X) && isvector (Y))
X = X(:); Y = Y(:);
elseif (size_equal (X, Y))
X = X(1,:)'; Y = Y(:,1);
else
error ("interp2: X and Y must be matrices of same size");
endif
if (columns (Z) != length (X) || rows (Z) != length (Y))
error ("interp2: X and Y size must match the dimensions of Z");
endif
## If Xi and Yi are vectors of different orientation build a grid
if ((rows (XI) == 1 && columns (YI) == 1)
|| (columns (XI) == 1 && rows (YI) == 1))
[XI, YI] = meshgrid (XI, YI);
elseif (! size_equal (XI, YI))
error ("interp2: XI and YI must be matrices of equal size");
endif
## if XI, YI are vectors, X and Y should share their orientation.
if (rows (XI) == 1)
if (rows (X) != 1)
X = X.';
endif
if (rows (Y) != 1)
Y = Y.';
endif
elseif (columns (XI) == 1)
if (columns (X) != 1)
X = X.';
endif
if (columns (Y) != 1)
Y = Y.';
endif
endif
xidx = lookup (X, XI, "lr");
yidx = lookup (Y, YI, "lr");
if (strcmp (method, "linear"))
## each quad satisfies the equation z(x,y)=a+b*x+c*y+d*xy
##
## a-b
## | |
## c-d
a = Z(1:(zr - 1), 1:(zc - 1));
b = Z(1:(zr - 1), 2:zc) - a;
c = Z(2:zr, 1:(zc - 1)) - a;
d = Z(2:zr, 2:zc) - a - b - c;
## scale XI, YI values to a 1-spaced grid
Xsc = (XI - X(xidx)) ./ (diff (X)(xidx));
Ysc = (YI - Y(yidx)) ./ (diff (Y)(yidx));
## Get 2D index.
idx = sub2ind (size (a), yidx, xidx);
## We can dispose of the 1D indices at this point to save memory.
clear xidx yidx;
## apply plane equation
ZI = a(idx) + b(idx).*Xsc + c(idx).*Ysc + d(idx).*Xsc.*Ysc;
elseif (strcmp (method, "nearest"))
ii = (XI - X(xidx) >= X(xidx + 1) - XI);
jj = (YI - Y(yidx) >= Y(yidx + 1) - YI);
idx = sub2ind (size (Z), yidx+jj, xidx+ii);
ZI = Z(idx);
elseif (strcmp (method, "pchip"))
if (length (X) < 2 || length (Y) < 2)
error ("interp2: pchip2 requires at least 2 points in each dimension");
endif
## first order derivatives
DX = __pchip_deriv__ (X, Z, 2);
DY = __pchip_deriv__ (Y, Z, 1);
## Compute mixed derivatives row-wise and column-wise, use the average.
DXY = (__pchip_deriv__ (X, DY, 2) + __pchip_deriv__ (Y, DX, 1))/2;
## do the bicubic interpolation
hx = diff (X); hx = hx(xidx);
hy = diff (Y); hy = hy(yidx);
tx = (XI - X(xidx)) ./ hx;
ty = (YI - Y(yidx)) ./ hy;
## construct the cubic hermite base functions in x, y
## formulas:
## b{1,1} = ( 2*t.^3 - 3*t.^2 + 1);
## b{2,1} = h.*( t.^3 - 2*t.^2 + t );
## b{1,2} = (-2*t.^3 + 3*t.^2 );
## b{2,2} = h.*( t.^3 - t.^2 );
## optimized equivalents of the above:
t1 = tx.^2;
t2 = tx.*t1 - t1;
xb{2,2} = hx.*t2;
t1 = t2 - t1;
xb{2,1} = hx.*(t1 + tx);
t2 += t1;
xb{1,2} = -t2;
xb{1,1} = t2 + 1;
t1 = ty.^2;
t2 = ty.*t1 - t1;
yb{2,2} = hy.*t2;
t1 = t2 - t1;
yb{2,1} = hy.*(t1 + ty);
t2 += t1;
yb{1,2} = -t2;
yb{1,1} = t2 + 1;
ZI = zeros (size (XI));
for i = 1:2
for j = 1:2
zidx = sub2ind (size (Z), yidx+(j-1), xidx+(i-1));
ZI += xb{1,i} .* yb{1,j} .* Z(zidx);
ZI += xb{2,i} .* yb{1,j} .* DX(zidx);
ZI += xb{1,i} .* yb{2,j} .* DY(zidx);
ZI += xb{2,i} .* yb{2,j} .* DXY(zidx);
endfor
endfor
endif
if (! isempty (extrapval))
## set points outside the table to 'extrapval'
if (X (1) < X (end))
if (Y (1) < Y (end))
ZI (XI < X(1,1) | XI > X(end) | YI < Y(1,1) | YI > Y(end)) = ...
extrapval;
else
ZI (XI < X(1) | XI > X(end) | YI < Y(end) | YI > Y(1)) = ...
extrapval;
endif
else
if (Y (1) < Y (end))
ZI (XI < X(end) | XI > X(1) | YI < Y(1) | YI > Y(end)) = ...
extrapval;
else
ZI (XI < X(1,end) | XI > X(1) | YI < Y(end) | YI > Y(1)) = ...
extrapval;
endif
endif
endif
else
## Check dimensions of X and Y
if (isvector (X) && isvector (Y))
X = X(:).';
Y = Y(:);
if (!isequal ([length(Y), length(X)], size(Z)))
error ("interp2: X and Y size must match the dimensions of Z");
endif
elseif (!size_equal (X, Y))
error ("interp2: X and Y must be matrices of equal size");
if (! size_equal (X, Z))
error ("interp2: X and Y size must match the dimensions of Z");
endif
endif
## Check dimensions of XI and YI
if (isvector (XI) && isvector (YI) && ! size_equal (XI, YI))
XI = XI(:).';
YI = YI(:);
[XI, YI] = meshgrid (XI, YI);
elseif (! size_equal (XI, YI))
error ("interp2: XI and YI must be matrices of equal size");
endif
if (strcmp (method, "cubic"))
if (isgriddata (XI) && isgriddata (YI'))
ZI = bicubic (X, Y, Z, XI (1, :), YI (:, 1), extrapval);
elseif (isgriddata (X) && isgriddata (Y'))
## Allocate output
ZI = zeros (size (X));
## Find inliers
inside = !(XI < X (1) | XI > X (end) | YI < Y (1) | YI > Y (end));
## Scale XI and YI to match indices of Z
XI = (columns (Z) - 1) * (XI - X (1)) / (X (end) - X (1)) + 1;
YI = (rows (Z) - 1) * (YI - Y (1)) / (Y (end) - Y (1)) + 1;
## Start the real work
K = floor (XI);
L = floor (YI);
## Coefficients
AY1 = bc ((YI - L + 1));
AX1 = bc ((XI - K + 1));
AY0 = bc ((YI - L + 0));
AX0 = bc ((XI - K + 0));
AY_1 = bc ((YI - L - 1));
AX_1 = bc ((XI - K - 1));
AY_2 = bc ((YI - L - 2));
AX_2 = bc ((XI - K - 2));
## Perform interpolation
sz = size (Z);
ZI = AY_2 .* AX_2 .* Z (sym_sub2ind (sz, L+2, K+2)) ...
+ AY_2 .* AX_1 .* Z (sym_sub2ind (sz, L+2, K+1)) ...
+ AY_2 .* AX0 .* Z (sym_sub2ind (sz, L+2, K)) ...
+ AY_2 .* AX1 .* Z (sym_sub2ind (sz, L+2, K-1)) ...
+ AY_1 .* AX_2 .* Z (sym_sub2ind (sz, L+1, K+2)) ...
+ AY_1 .* AX_1 .* Z (sym_sub2ind (sz, L+1, K+1)) ...
+ AY_1 .* AX0 .* Z (sym_sub2ind (sz, L+1, K)) ...
+ AY_1 .* AX1 .* Z (sym_sub2ind (sz, L+1, K-1)) ...
+ AY0 .* AX_2 .* Z (sym_sub2ind (sz, L, K+2)) ...
+ AY0 .* AX_1 .* Z (sym_sub2ind (sz, L, K+1)) ...
+ AY0 .* AX0 .* Z (sym_sub2ind (sz, L, K)) ...
+ AY0 .* AX1 .* Z (sym_sub2ind (sz, L, K-1)) ...
+ AY1 .* AX_2 .* Z (sym_sub2ind (sz, L-1, K+2)) ...
+ AY1 .* AX_1 .* Z (sym_sub2ind (sz, L-1, K+1)) ...
+ AY1 .* AX0 .* Z (sym_sub2ind (sz, L-1, K)) ...
+ AY1 .* AX1 .* Z (sym_sub2ind (sz, L-1, K-1));
ZI (!inside) = extrapval;
else
error ("interp2: input data must have 'meshgrid' format");
endif
elseif (strcmp (method, "spline"))
if (isgriddata (XI) && isgriddata (YI'))
ZI = __splinen__ ({Y(:,1).', X(1,:)}, Z, {YI(:,1), XI(1,:)}, extrapval,
"spline");
else
error ("interp2: input data must have 'meshgrid' format");
endif
else
error ("interp2: interpolation METHOD not recognized");
endif
endif
endfunction
function b = isgriddata (X)
d1 = diff (X, 1, 1);
b = all (d1 (:) == 0);
endfunction
## Compute the bicubic interpolation coefficients
function o = bc (x)
x = abs (x);
o = zeros (size (x));
idx1 = (x < 1);
idx2 = !idx1 & (x < 2);
o(idx1) = 1 - 2.*x(idx1).^2 + x(idx1).^3;
o(idx2) = 4 - 8.*x(idx2) + 5.*x(idx2).^2 - x(idx2).^3;
endfunction
## This version of sub2ind behaves as if the data was symmetrically padded
function ind = sym_sub2ind (sz, Y, X)
Y (Y < 1) = 1 - Y (Y < 1);
while (any (Y (:) > 2 * sz (1)))
Y (Y > 2 * sz (1)) = round (Y (Y > 2 * sz (1)) / 2);
endwhile
Y (Y > sz (1)) = 1 + 2 * sz (1) - Y (Y > sz (1));
X (X < 1) = 1 - X (X < 1);
while (any (X (:) > 2 * sz (2)))
X (X > 2 * sz (2)) = round (X (X > 2 * sz (2)) / 2);
endwhile
X (X > sz (2)) = 1 + 2 * sz (2) - X (X > sz (2));
ind = sub2ind (sz, Y, X);
endfunction
%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,4]; y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "linear"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:)'; y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "linear"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,4]; y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "nearest"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:)'; y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "nearest"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2]; y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "pchip"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:)'; y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "pchip"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2]; y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "cubic"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:)'; y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "cubic"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2]; y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "spline"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:)'; y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41)';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "spline"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!test % simple test
%! x = [1,2,3];
%! y = [4,5,6,7];
%! [X, Y] = meshgrid (x, y);
%! Orig = X.^2 + Y.^3;
%! xi = [1.2,2, 1.5];
%! yi = [6.2, 4.0, 5.0]';
%!
%! Expected = ...
%! [243, 245.4, 243.9;
%! 65.6, 68, 66.5;
%! 126.6, 129, 127.5];
%! Result = interp2 (x,y,Orig, xi, yi);
%!
%! assert (Result, Expected, 1000*eps);
%!test % 2^n form
%! x = [1,2,3];
%! y = [4,5,6,7];
%! [X, Y] = meshgrid (x, y);
%! Orig = X.^2 + Y.^3;
%! xi = [1:0.25:3]; yi = [4:0.25:7]';
%! Expected = interp2 (x,y,Orig, xi, yi);
%! Result = interp2 (Orig, 2);
%!
%! assert (Result, Expected, 10*eps);
%!test % matrix slice
%! A = eye (4);
%! assert (interp2 (A,[1:4],[1:4]), [1,1,1,1]);
%!test % non-gridded XI,YI
%! A = eye (4);
%! assert (interp2 (A,[1,2;3,4],[1,3;2,4]), [1,0;0,1]);
%!test % for values outside of boundaries
%! x = [1,2,3];
%! y = [4,5,6,7];
%! [X, Y] = meshgrid (x,y);
%! Orig = X.^2 + Y.^3;
%! xi = [0,4];
%! yi = [3,8]';
%! assert (interp2 (x,y,Orig, xi, yi), [NA,NA;NA,NA]);
%! assert (interp2 (x,y,Orig, xi, yi,"linear", 0), [0,0;0,0]);
%!test % for values at boundaries
%! A=[1,2;3,4];
%! x=[0,1];
%! y=[2,3]';
%! assert (interp2 (x,y,A,x,y,"linear"), A);
%! assert (interp2 (x,y,A,x,y,"nearest"), A);
%!test % for Matlab-compatible rounding for 'nearest'
%! X = meshgrid (1:4);
%! assert (interp2 (X, 2.5, 2.5, "nearest"), 3);
%!shared z, zout, tol
%! z = [1 3 5; 3 5 7; 5 7 9];
%! zout = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8; 5 6 7 8 9];
%! tol = 2 * eps;
%!assert (interp2 (z), zout, tol)
%!assert (interp2 (z, "linear"), zout, tol)
%!assert (interp2 (z, "pchip"), zout, tol)
%!assert (interp2 (z, "cubic"), zout, 10 * tol)
%!assert (interp2 (z, "spline"), zout, tol)
%!assert (interp2 (z, [2 3 1], [2 2 2]', "linear"), repmat ([5, 7, 3], [3, 1]), tol)
%!assert (interp2 (z, [2 3 1], [2 2 2]', "pchip"), repmat ([5, 7, 3], [3, 1]), tol)
%!assert (interp2 (z, [2 3 1], [2 2 2]', "cubic"), repmat ([5, 7, 3], [3, 1]), 10 * tol)
%!assert (interp2 (z, [2 3 1], [2 2 2]', "spline"), repmat ([5, 7, 3], [3, 1]), tol)
%!assert (interp2 (z, [2 3 1], [2 2 2], "linear"), [5 7 3], tol)
%!assert (interp2 (z, [2 3 1], [2 2 2], "pchip"), [5 7 3], tol)
%!assert (interp2 (z, [2 3 1], [2 2 2], "cubic"), [5 7 3], 10 * tol)
%!assert (interp2 (z, [2 3 1], [2 2 2], "spline"), [5 7 3], tol)
|