File: interp3.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (201 lines) | stat: -rw-r--r-- 7,250 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
## Copyright (C) 2007-2013 David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{vi} =} interp3 (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {Function File} {@var{vi} =} interp3 (@var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {Function File} {@var{vi} =} interp3 (@var{v}, @var{m})
## @deftypefnx {Function File} {@var{vi} =} interp3 (@var{v})
## @deftypefnx {Function File} {@var{vi} =} interp3 (@dots{}, @var{method})
## @deftypefnx {Function File} {@var{vi} =} interp3 (@dots{}, @var{method}, @var{extrapval})
##
## Perform 3-dimensional interpolation.  Each element of the 3-dimensional
## array @var{v} represents a value at a location given by the parameters
## @var{x}, @var{y}, and @var{z}.  The parameters @var{x}, @var{x}, and
## @var{z} are either 3-dimensional arrays of the same size as the array
## @var{v} in the @qcode{"meshgrid"} format or vectors.  The parameters
## @var{xi}, etc. respect a similar format to @var{x}, etc., and they
## represent the points at which the array @var{vi} is interpolated.
##
## If @var{x}, @var{y}, @var{z} are omitted, they are assumed to be
## @code{x = 1 : size (@var{v}, 2)}, @code{y = 1 : size (@var{v}, 1)} and
## @code{z = 1 : size (@var{v}, 3)}.  If @var{m} is specified, then
## the interpolation adds a point half way between each of the interpolation
## points.  This process is performed @var{m} times.  If only @var{v} is
## specified, then @var{m} is assumed to be @code{1}.
##
## Method is one of:
##
## @table @asis
## @item @qcode{"nearest"}
## Return the nearest neighbor.
##
## @item @qcode{"linear"}
## Linear interpolation from nearest neighbors.
##
## @item @qcode{"cubic"}
## Cubic interpolation from four nearest neighbors (not implemented yet).
##
## @item @qcode{"spline"}
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## The default method is @qcode{"linear"}.
##
## If @var{extrap} is the string @qcode{"extrap"}, then extrapolate values
## beyond the endpoints.  If @var{extrap} is a number, replace values beyond
## the endpoints with that number.  If @var{extrap} is missing, assume NA.
## @seealso{interp1, interp2, spline, meshgrid}
## @end deftypefn

function vi = interp3 (varargin)
  method = "linear";
  extrapval = NA;
  nargs = nargin;

  if (nargin < 1 || ! isnumeric (varargin{1}))
    print_usage ();
  endif

  if (ischar (varargin{end}))
    method = varargin{end};
    nargs = nargs - 1;
  elseif (nargs > 1 && ischar (varargin{end - 1}))
    if (! isnumeric (varargin{end}) || ! isscalar (varargin{end}))
      error ("interp3: extrapal is expected to be a numeric scalar");
    endif
    extrapval = varargin{end};
    method = varargin{end-1};
    nargs = nargs - 2;
  endif

  if (nargs < 3 || (nargs == 4 && ! isvector (varargin{1})
                    && nargs == (ndims (varargin{1}) + 1)))
    v = varargin{1};
    if (ndims (v) != 3)
      error ("interp3: expect 3-dimensional array of values");
    endif
    x = varargin (2:nargs);
    if (any (! cellfun (@isvector, x)))
      for i = 2 : 3
        if (! size_equal (x{1}, x{i}))
          error ("interp3: dimensional mismatch");
        endif
        x{i} = permute (x{i}, [2, 1, 3]);
      endfor
      x{1} = permute (x{1}, [2, 1, 3]);
    endif
    v = permute (v, [2, 1, 3]);
    vi = ipermute (interpn (v, x{:}, method, extrapval), [2, 1, 3]);
  elseif (nargs == 7 && nargs == (2 * ndims (varargin{ceil (nargs / 2)})) + 1)
    v = varargin{4};
    if (ndims (v) != 3)
      error ("interp3: expect 3-dimensional array of values");
    endif
    x = varargin (1:3);
    if (any (! cellfun (@isvector, x)))
      for i = 2 : 3
        if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v))
          error ("interp3: dimensional mismatch");
        endif
        x{i} = permute (x{i}, [2, 1, 3]);
      endfor
      x{1} = permute (x{1}, [2, 1, 3]);
    endif
    y = varargin (5:7);
    if (any (! cellfun (@isvector, y)))
      for i = 2 : 3
        if (! size_equal (y{1}, y{i}))
          error ("interp3: dimensional mismatch");
        endif
        y{i} = permute (y{i}, [2, 1, 3]);
      endfor
      y{1} = permute (y{1}, [2, 1, 3]);
    endif
    v = permute (v, [2, 1, 3]);
    vi = ipermute (interpn (x{:}, v, y{:}, method, extrapval), [2, 1, 3]);
  else
    error ("interp3: wrong number or incorrectly formatted input arguments");
  endif
endfunction


%!test
%! x = y = z = -1:1; y = y + 2;
%! f = @(x,y,z) x.^2 - y - z.^2;
%! [xx, yy, zz] = meshgrid (x, y, z);
%! v = f (xx,yy,zz);
%! xi = yi = zi = -1:0.5:1; yi = yi + 2.1;
%! [xxi, yyi, zzi] = meshgrid (xi, yi, zi);
%! vi = interp3 (x, y, z, v, xxi, yyi, zzi);
%! [xxi, yyi, zzi] = ndgrid (yi, xi, zi);
%! vi2 = interpn (y, x, z, v, xxi, yyi, zzi);
%! tol = 10 * eps;
%! assert (vi, vi2, tol);

%!test
%! x=z=1:2; y=1:3;xi=zi=.6:1.6; yi=1; v=ones([3,2,2]);  v(:,2,1)=[7 ;5;4];  v(:,1,2)=[2 ;3;5];
%! [xxi3, yyi3, zzi3] = meshgrid (xi, yi, zi);
%! [xxi, yyi, zzi] = ndgrid (yi, xi, zi);
%! vi = interp3 (x, y, z, v, xxi3, yyi3, zzi3, "nearest");
%! vi2 = interpn (y, x, z, v, xxi, yyi, zzi,"nearest");
%! assert (vi, vi2);

%!test
%! x=z=1:2; y=1:3;xi=zi=.6:1.6; yi=1; v=ones([3,2,2]);  v(:,2,1)=[7 ;5;4];  v(:,1,2)=[2 ;3;5];
%! vi = interp3 (x, y, z, v, xi+1, yi, zi, "nearest",3);
%! vi2 = interpn (y, x, z, v, yi, xi+1, zi,"nearest", 3);
%! assert (vi, vi2);

%!test
%! x=z=1:2; y=1:3;xi=zi=.6:1.6; yi=1; v=ones([3,2,2]);  v(:,2,1)=[7 ;5;4];  v(:,1,2)=[2 ;3;5];
%! vi = interp3 (x, y, z, v, xi, yi, zi, "nearest");
%! vi2 = interpn (y, x, z, v, yi, xi, zi,"nearest");
%! assert (vi, vi2);

%!test
%! x=z=1:2; y=1:3;xi=zi=.6:1.6; yi=1; v=ones([3,2,2]);  v(:,2,1)=[7 ;5;4];  v(:,1,2)=[2 ;3;5];
%! vi = interp3 (v, xi, yi, zi, "nearest",3);
%! vi2 = interpn (v, yi, xi, zi,"nearest", 3);
%! assert (vi, vi2);

%!test
%! xi=zi=.6:1.6; yi=1; v=ones([3,2,2]);  v(:,2,1)=[7 ;5;4];  v(:,1,2)=[2 ;3;5];
%! vi = interp3 (v, xi, yi, zi, "nearest");
%! vi2 = interpn (v, yi, xi, zi,"nearest");
%! assert (vi, vi2);

%!shared z, zout, tol
%! z = zeros (3, 3, 3);
%! zout = zeros (5, 5, 5);
%! z(:,:,1) = [1 3 5; 3 5 7; 5 7 9];
%! z(:,:,2) = z(:,:,1) + 2;
%! z(:,:,3) = z(:,:,2) + 2;
%! for n = 1:5
%!   zout(:,:,n) = [1 2 3 4 5;
%!                  2 3 4 5 6; 
%!                  3 4 5 6 7;
%!                  4 5 6 7 8;
%!                  5 6 7 8 9] + (n-1);
%! end
%! tol = 10 * eps;
%!assert (interp3 (z), zout, tol)
%!assert (interp3 (z, "linear"), zout, tol)
%!assert (interp3 (z, "spline"), zout, tol)