File: interpft.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (143 lines) | stat: -rw-r--r-- 4,240 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
## Copyright (C) 2001-2013 Paul Kienzle
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} interpft (@var{x}, @var{n})
## @deftypefnx {Function File} {} interpft (@var{x}, @var{n}, @var{dim})
##
## Fourier interpolation.  If @var{x} is a vector, then @var{x} is
## resampled with @var{n} points.  The data in @var{x} is assumed to be
## equispaced.  If @var{x} is a matrix or an N-dimensional array, the
## interpolation is performed on each column of @var{x}.  If @var{dim} is
## specified, then interpolate along the dimension @var{dim}.
##
## @code{interpft} assumes that the interpolated function is periodic,
## and so assumptions are made about the endpoints of the interpolation.
##
## @seealso{interp1}
## @end deftypefn

## Author: Paul Kienzle
## 2001-02-11
##    * initial version
## 2002-03-17 aadler
##    * added code to work on matrices as well
## 2006-05-25 dbateman
##    * Make it matlab compatiable, cutting out the 2-D interpolation

function z = interpft (x, n, dim)

  if (nargin < 2 || nargin > 3)
    print_usage ();
  endif

  if (! (isscalar (n) && n == fix (n)))
    error ("interpft: N must be a scalar integer");
  endif

  if (nargin == 2)
    if (isrow (x))
      dim = 2;
    else
      dim = 1;
    endif
  endif

  nd = ndims (x);

  if (dim < 1 || dim > nd)
    error ("interpft: invalid dimension DIM");
  endif

  perm = [dim:nd, 1:(dim-1)];
  x = permute (x, perm);
  m = rows (x);

  inc = ceil (m/n);
  y = fft (x) / m;
  k = ceil (m / 2);
  sz = size (x);
  sz(1) = n * inc - m;

  idx = repmat ({':'}, nd, 1);
  idx{1} = 1:k;
  z = cat (1, y(idx{:}), zeros (sz));
  idx{1} = k+1:m;
  z = cat (1, z, y(idx{:}));

  ## When m is an even number of rows, the FFT has a single Nyquist bin.
  ## If zero-padded above, distribute the value of the Nyquist bin evenly
  ## between the new corresponding positive and negative frequency bins.
  if (sz(1) > 0 && k == m/2)
    idx{1} = n * inc - k + 1;
    tmp = z(idx{:}) / 2;
    z(idx{:}) = tmp;
    idx{1} = k + 1;
    z(idx{:}) = tmp;
  endif

  z = n * ifft (z);

  if (inc != 1)
    sz(1) = n;
    z = inc * reshape (z(1:inc:end), sz);
  endif

  z = ipermute (z, perm);

endfunction


%!demo
%! clf;
%! t = 0 : 0.3 : pi;  dt = t(2)-t(1);
%! n = length (t);  k = 100;
%! ti = t(1) + [0 : k-1]*dt*n/k;
%! y = sin (4*t + 0.3) .* cos (3*t - 0.1);
%! yp = sin (4*ti + 0.3) .* cos (3*ti - 0.1);
%! plot (ti, yp, 'g', ti, interp1(t, y, ti, "spline"), 'b', ...
%!       ti, interpft (y, k), 'c', t, y, "r+");
%! legend ("sin(4t+0.3)cos(3t-0.1)", "spline", "interpft", "data");

%!shared n,y
%! x = [0:10]';  y = sin(x);  n = length (x);
%!assert (interpft (y, n), y, 20*eps);
%!assert (interpft (y', n), y', 20*eps);
%!assert (interpft ([y,y],n), [y,y], 20*eps);

%% Test case with complex input from bug #39566
%!test
%! x = (1 + j) * [1:4]';
%! y = ifft ([15 + 15*j; -6; -1.5 - 1.5*j; 0; -1.5 - 1.5*j; -6*j]);
%! assert (interpft (x, 6), y, 10*eps);

%% Test for correct spectral symmetry with even/odd lengths
%!assert (max (abs (imag (interpft ([1:8], 20)))), 0, 20*eps);
%!assert (max (abs (imag (interpft ([1:8], 21)))), 0, 21*eps);
%!assert (max (abs (imag (interpft ([1:9], 20)))), 0, 20*eps);
%!assert (max (abs (imag (interpft ([1:9], 21)))), 0, 21*eps);

%% Test input validation
%!error interpft ()
%!error interpft (1)
%!error interpft (1,2,3)
%!error <N must be a scalar integer> interpft (1,[2,2])
%!error <N must be a scalar integer> interpft (1,2.1)
%!error <invalid dimension DIM> interpft (1,2,0)
%!error <invalid dimension DIM> interpft (1,2,3)