1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
## Copyright (C) 2001-2013 Paul Kienzle
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} interpft (@var{x}, @var{n})
## @deftypefnx {Function File} {} interpft (@var{x}, @var{n}, @var{dim})
##
## Fourier interpolation. If @var{x} is a vector, then @var{x} is
## resampled with @var{n} points. The data in @var{x} is assumed to be
## equispaced. If @var{x} is a matrix or an N-dimensional array, the
## interpolation is performed on each column of @var{x}. If @var{dim} is
## specified, then interpolate along the dimension @var{dim}.
##
## @code{interpft} assumes that the interpolated function is periodic,
## and so assumptions are made about the endpoints of the interpolation.
##
## @seealso{interp1}
## @end deftypefn
## Author: Paul Kienzle
## 2001-02-11
## * initial version
## 2002-03-17 aadler
## * added code to work on matrices as well
## 2006-05-25 dbateman
## * Make it matlab compatiable, cutting out the 2-D interpolation
function z = interpft (x, n, dim)
if (nargin < 2 || nargin > 3)
print_usage ();
endif
if (! (isscalar (n) && n == fix (n)))
error ("interpft: N must be a scalar integer");
endif
if (nargin == 2)
if (isrow (x))
dim = 2;
else
dim = 1;
endif
endif
nd = ndims (x);
if (dim < 1 || dim > nd)
error ("interpft: invalid dimension DIM");
endif
perm = [dim:nd, 1:(dim-1)];
x = permute (x, perm);
m = rows (x);
inc = ceil (m/n);
y = fft (x) / m;
k = ceil (m / 2);
sz = size (x);
sz(1) = n * inc - m;
idx = repmat ({':'}, nd, 1);
idx{1} = 1:k;
z = cat (1, y(idx{:}), zeros (sz));
idx{1} = k+1:m;
z = cat (1, z, y(idx{:}));
## When m is an even number of rows, the FFT has a single Nyquist bin.
## If zero-padded above, distribute the value of the Nyquist bin evenly
## between the new corresponding positive and negative frequency bins.
if (sz(1) > 0 && k == m/2)
idx{1} = n * inc - k + 1;
tmp = z(idx{:}) / 2;
z(idx{:}) = tmp;
idx{1} = k + 1;
z(idx{:}) = tmp;
endif
z = n * ifft (z);
if (inc != 1)
sz(1) = n;
z = inc * reshape (z(1:inc:end), sz);
endif
z = ipermute (z, perm);
endfunction
%!demo
%! clf;
%! t = 0 : 0.3 : pi; dt = t(2)-t(1);
%! n = length (t); k = 100;
%! ti = t(1) + [0 : k-1]*dt*n/k;
%! y = sin (4*t + 0.3) .* cos (3*t - 0.1);
%! yp = sin (4*ti + 0.3) .* cos (3*ti - 0.1);
%! plot (ti, yp, 'g', ti, interp1(t, y, ti, "spline"), 'b', ...
%! ti, interpft (y, k), 'c', t, y, "r+");
%! legend ("sin(4t+0.3)cos(3t-0.1)", "spline", "interpft", "data");
%!shared n,y
%! x = [0:10]'; y = sin(x); n = length (x);
%!assert (interpft (y, n), y, 20*eps);
%!assert (interpft (y', n), y', 20*eps);
%!assert (interpft ([y,y],n), [y,y], 20*eps);
%% Test case with complex input from bug #39566
%!test
%! x = (1 + j) * [1:4]';
%! y = ifft ([15 + 15*j; -6; -1.5 - 1.5*j; 0; -1.5 - 1.5*j; -6*j]);
%! assert (interpft (x, 6), y, 10*eps);
%% Test for correct spectral symmetry with even/odd lengths
%!assert (max (abs (imag (interpft ([1:8], 20)))), 0, 20*eps);
%!assert (max (abs (imag (interpft ([1:8], 21)))), 0, 21*eps);
%!assert (max (abs (imag (interpft ([1:9], 20)))), 0, 20*eps);
%!assert (max (abs (imag (interpft ([1:9], 21)))), 0, 21*eps);
%% Test input validation
%!error interpft ()
%!error interpft (1)
%!error interpft (1,2,3)
%!error <N must be a scalar integer> interpft (1,[2,2])
%!error <N must be a scalar integer> interpft (1,2.1)
%!error <invalid dimension DIM> interpft (1,2,0)
%!error <invalid dimension DIM> interpft (1,2,3)
|