1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
## Copyright (C) 2007-2013 David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{vi} =} interpn (@var{x1}, @var{x2}, @dots{}, @var{v}, @var{y1}, @var{y2}, @dots{})
## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{y1}, @var{y2}, @dots{})
## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{m})
## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v})
## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method})
## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}, @var{extrapval})
##
## Perform @var{n}-dimensional interpolation, where @var{n} is at least two.
## Each element of the @var{n}-dimensional array @var{v} represents a value
## at a location given by the parameters @var{x1}, @var{x2}, @dots{}, @var{xn}.
## The parameters @var{x1}, @var{x2}, @dots{}, @var{xn} are either
## @var{n}-dimensional arrays of the same size as the array @var{v} in
## the @qcode{"ndgrid"} format or vectors. The parameters @var{y1}, etc.
## respect a similar format to @var{x1}, etc., and they represent the points
## at which the array @var{vi} is interpolated.
##
## If @var{x1}, @dots{}, @var{xn} are omitted, they are assumed to be
## @code{x1 = 1 : size (@var{v}, 1)}, etc. If @var{m} is specified, then
## the interpolation adds a point half way between each of the interpolation
## points. This process is performed @var{m} times. If only @var{v} is
## specified, then @var{m} is assumed to be @code{1}.
##
## Method is one of:
##
## @table @asis
## @item @qcode{"nearest"}
## Return the nearest neighbor.
##
## @item @qcode{"linear"}
## Linear interpolation from nearest neighbors.
##
## @item @qcode{"cubic"}
## Cubic interpolation from four nearest neighbors (not implemented yet).
##
## @item @qcode{"spline"}
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## The default method is @qcode{"linear"}.
##
## If @var{extrapval} is the scalar value, use it to replace the values
## beyond the endpoints with that number. If @var{extrapval} is missing,
## assume NA.
## @seealso{interp1, interp2, spline, ndgrid}
## @end deftypefn
function vi = interpn (varargin)
method = "linear";
extrapval = NA;
nargs = nargin;
if (nargin < 1 || ! isnumeric (varargin{1}))
print_usage ();
endif
if (ischar (varargin{end}))
method = varargin{end};
nargs -= 1;
elseif (nargs > 1 && ischar (varargin{end - 1}))
if (! isnumeric (varargin{end}) || ! isscalar (varargin{end}))
error ("interpn: extrapal is expected to be a numeric scalar");
endif
method = varargin{end - 1};
extrapval = varargin{end};
nargs -= 2;
endif
if (nargs < 3)
v = varargin{1};
m = 1;
if (nargs == 2)
if (ischar (varargin{2}))
method = varargin{2};
elseif (isnumeric (m) && isscalar (m) && fix (m) == m)
m = varargin{2};
else
print_usage ();
endif
endif
sz = size (v);
nd = ndims (v);
x = cell (1, nd);
y = cell (1, nd);
for i = 1 : nd
x{i} = 1 : sz(i);
y{i} = 1 : (1 / (2 ^ m)) : sz(i);
endfor
y{1} = y{1}.';
[y{:}] = ndgrid (y{:});
elseif (! isvector (varargin{1}) && nargs == (ndims (varargin{1}) + 1))
v = varargin{1};
sz = size (v);
nd = ndims (v);
x = cell (1, nd);
y = varargin(2 : nargs);
for i = 1 : nd
x{i} = 1 : sz(i);
endfor
elseif (rem (nargs, 2) == 1
&& nargs == (2 * ndims (varargin{ceil (nargs / 2)})) + 1)
nv = ceil (nargs / 2);
v = varargin{nv};
sz = size (v);
nd = ndims (v);
x = varargin(1 : (nv - 1));
y = varargin((nv + 1) : nargs);
else
error ("interpn: wrong number or incorrectly formatted input arguments");
endif
if (any (! cellfun ("isvector", x)))
for i = 2 : nd
if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v))
error ("interpn: dimensional mismatch");
endif
idx(1 : nd) = {1};
idx(i) = ":";
x{i} = x{i}(idx{:})(:);
endfor
idx(1 : nd) = {1};
idx(1) = ":";
x{1} = x{1}(idx{:})(:);
endif
method = tolower (method);
all_vectors = all (cellfun ("isvector", y));
different_lengths = numel (unique (cellfun ("numel", y))) > 1;
if (all_vectors && different_lengths)
[foobar(1:numel(y)).y] = ndgrid (y{:});
y = {foobar.y};
endif
if (strcmp (method, "linear"))
vi = __lin_interpn__ (x{:}, v, y{:});
vi(isna (vi)) = extrapval;
elseif (strcmp (method, "nearest"))
yshape = size (y{1});
yidx = cell (1, nd);
for i = 1 : nd
y{i} = y{i}(:);
yidx{i} = lookup (x{i}, y{i}, "lr");
endfor
idx = cell (1,nd);
for i = 1 : nd
idx{i} = yidx{i} + (y{i} - x{i}(yidx{i})(:) >= x{i}(yidx{i} + 1)(:) - y{i});
endfor
vi = v(sub2ind (sz, idx{:}));
idx = zeros (prod (yshape), 1);
for i = 1 : nd
idx |= y{i} < min (x{i}(:)) | y{i} > max (x{i}(:));
endfor
vi(idx) = extrapval;
vi = reshape (vi, yshape);
elseif (strcmp (method, "spline"))
if (any (! cellfun ("isvector", y)))
for i = 2 : nd
if (! size_equal (y{1}, y{i}))
error ("interpn: dimensional mismatch");
endif
idx(1 : nd) = {1};
idx(i) = ":";
y{i} = y{i}(idx{:});
endfor
idx(1 : nd) = {1};
idx(1) = ":";
y{1} = y{1}(idx{:});
endif
vi = __splinen__ (x, v, y, extrapval, "interpn");
if (size_equal (y{:}))
ly = length (y{1});
idx = cell (1, ly);
q = cell (1, nd);
for i = 1 : ly
q(:) = i;
idx{i} = q;
endfor
vi = vi(cellfun (@(x) sub2ind (size (vi), x{:}), idx));
vi = reshape (vi, size (y{1}));
endif
elseif (strcmp (method, "cubic"))
error ("interpn: cubic interpolation not yet implemented");
else
error ("interpn: unrecognized interpolation METHOD");
endif
endfunction
%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,4]; y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi, yi, interpn (x,y,A.',xi,yi, "linear").');
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,4]; y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi, yi, interpn (x,y,A.',xi,yi, "nearest").');
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!#demo # FIXME: Uncomment when support for "cubic" has been added
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2]; y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi, yi, interpn (x,y,A.',xi,yi, "cubic").');
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2]; y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi, yi, interpn (x,y,A.',xi,yi, "spline").');
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! x = y = z = -1:1;
%! f = @(x,y,z) x.^2 - y - z.^2;
%! [xx, yy, zz] = meshgrid (x, y, z);
%! v = f (xx,yy,zz);
%! xi = yi = zi = -1:0.1:1;
%! [xxi, yyi, zzi] = ndgrid (xi, yi, zi);
%! vi = interpn (x, y, z, v, xxi, yyi, zzi, "spline");
%! mesh (yi, zi, squeeze (vi(1,:,:)));
%!test
%! [x,y,z] = ndgrid (0:2);
%! f = x + y + z;
%! assert (interpn (x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5]), [1.5, 4.5]);
%! assert (interpn (x,y,z,f,[.51 1.51],[.51 1.51],[.51 1.51],"nearest"), [3, 6]);
%! assert (interpn (x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5],"spline"), [1.5, 4.5]);
%! assert (interpn (x,y,z,f,x,y,z), f);
%! assert (interpn (x,y,z,f,x,y,z,"nearest"), f);
%! assert (interpn (x,y,z,f,x,y,z,"spline"), f);
%!test
%! [x, y, z] = ndgrid (0:2, 1:4, 2:6);
%! f = x + y + z;
%! xi = [0.5 1.0 1.5]; yi = [1.5 2.0 2.5 3.5]; zi = [2.5 3.5 4.0 5.0 5.5];
%! fi = interpn (x, y, z, f, xi, yi, zi);
%! [xi, yi, zi] = ndgrid (xi, yi, zi);
%! assert (fi, xi + yi + zi);
%!test
%! xi = 0:2; yi = 1:4; zi = 2:6;
%! [x, y, z] = ndgrid (xi, yi, zi);
%! f = x + y + z;
%! fi = interpn (x, y, z, f, xi, yi, zi, "nearest");
%! assert (fi, x + y + z);
%!test
%! [x,y,z] = ndgrid (0:2);
%! f = x.^2 + y.^2 + z.^2;
%! assert (interpn (x,y,-z,f,1.5,1.5,-1.5), 7.5);
%!test # for Matlab-compatible rounding for "nearest"
%! x = meshgrid (1:4);
%! assert (interpn (x, 2.5, 2.5, "nearest"), 3);
%!test
%! z = zeros (3, 3, 3);
%! zout = zeros (5, 5, 5);
%! z(:,:,1) = [1 3 5; 3 5 7; 5 7 9];
%! z(:,:,2) = z(:,:,1) + 2;
%! z(:,:,3) = z(:,:,2) + 2;
%! for n = 1:5
%! zout(:,:,n) = [1 2 3 4 5;
%! 2 3 4 5 6;
%! 3 4 5 6 7;
%! 4 5 6 7 8;
%! 5 6 7 8 9] + (n-1);
%! endfor
%! tol = 10*eps;
%! assert (interpn (z), zout, tol);
%! assert (interpn (z, "linear"), zout, tol);
%! assert (interpn (z, "spline"), zout, tol);
|