1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
## Copyright (C) 1993-2013 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} num2str (@var{x})
## @deftypefnx {Function File} {} num2str (@var{x}, @var{precision})
## @deftypefnx {Function File} {} num2str (@var{x}, @var{format})
## Convert a number (or array) to a string (or a character array). The
## optional second argument may either give the number of significant
## digits (@var{precision}) to be used in the output or a format
## template string (@var{format}) as in @code{sprintf} (@pxref{Formatted
## Output}). @code{num2str} can also handle complex numbers.
##
## Examples:
##
## @example
## @group
## num2str (123.456)
## @result{} "123.46"
##
## num2str (123.456, 4)
## @result{} "123.5"
##
## s = num2str ([1, 1.34; 3, 3.56], "%5.1f")
## @result{} s =
## 1.0 1.3
## 3.0 3.6
## whos s
## @result{}
## Attr Name Size Bytes Class
## ==== ==== ==== ===== =====
## s 2x8 16 char
##
## num2str (1.234 + 27.3i)
## @result{} "1.234+27.3i"
## @end group
## @end example
##
## Notes:
##
## For @sc{matlab} compatibility, leading spaces are stripped before returning
## the string.
##
## The @code{num2str} function is not very flexible. For better control
## over the results, use @code{sprintf} (@pxref{Formatted Output}).
##
## For complex @var{x}, the format string may only contain one
## output conversion specification and nothing else. Otherwise, results
## will be unpredictable.
## @seealso{sprintf, int2str, mat2str}
## @end deftypefn
## Author: jwe
function retval = num2str (x, arg)
if (nargin != 1 && nargin != 2)
print_usage ();
elseif (! ismatrix (x))
error ("num2str: X must be a numeric, logical, or character array");
endif
if (ischar (x))
retval = x;
elseif (isempty (x))
retval = "";
elseif (isreal (x))
if (nargin == 2)
if (ischar (arg))
fmt = arg;
elseif (isnumeric (arg) && isscalar (arg) && arg >= 0)
fmt = sprintf ("%%%d.%dg", arg+7, arg);
else
error ("num2str: PRECISION must be a scalar integer >= 0");
endif
else
if (isnumeric (x))
## Setup a suitable format string, ignoring inf entries
dgt = floor (log10 (max (abs (x(!isinf (x(:)))))));
if (isempty (dgt))
## If the whole input array is inf...
dgt = 1;
endif
if (any (x(:) != fix (x(:))))
## Floating point input
dgt = max (dgt + 4, 5); # Keep 4 sig. figures after decimal point
dgt = min (dgt, 16); # Cap significant digits at 16
fmt = sprintf ("%%%d.%dg", dgt+7+any (x(:) < 0), dgt);
else
## Integer input
dgt = max (dgt + 1, 1);
## FIXME: Integers should be masked to show only 16 significant digits
## See %!xtest below
fmt = sprintf ("%%%d.%dg", dgt+2+any (x(:) < 0), dgt);
endif
else
## Logical input
fmt = "%3d";
endif
endif
fmt = [deblank(repmat(fmt, 1, columns(x))), "\n"];
nd = ndims (x);
tmp = sprintf (fmt, permute (x, [2, 1, 3:nd]));
retval = strtrim (char (ostrsplit (tmp(1:end-1), "\n")));
else # Complex matrix input
if (nargin == 2)
if (ischar (arg))
fmt = [arg "%-+" arg(2:end) "i"];
elseif (isnumeric (arg) && isscalar (arg) && arg >= 0)
fmt = sprintf ("%%%d.%dg%%-+%d.%dgi", arg+7, arg, arg+7, arg);
else
error ("num2str: PRECISION must be a scalar integer >= 0");
endif
else
## Setup a suitable format string
dgt = floor (log10 (max (max (abs (real (x(!isinf (real (x(:))))))),
max (abs (imag (x(!isinf (imag (x(:))))))))));
if (isempty (dgt))
## If the whole input array is inf...
dgt = 1;
endif
if (any (x(:) != fix (x(:))))
## Floating point input
dgt = max (dgt + 4, 5); # Keep 4 sig. figures after decimal point
dgt = min (dgt, 16); # Cap significant digits at 16
fmt = sprintf ("%%%d.%dg%%-+%d.%dgi", dgt+7, dgt, dgt+7, dgt);
else
## Integer input
dgt = max (1 + dgt, 1);
## FIXME: Integers should be masked to show only 16 significant digits
## See %!xtest below
fmt = sprintf ("%%%d.%dg%%-+%d.%dgi", dgt+2, dgt, dgt+2, dgt);
endif
endif
## Manipulate the complex value to have real values in the odd
## columns and imaginary values in the even columns.
nc = columns (x);
nd = ndims (x);
idx = repmat ({':'}, nd, 1);
perm(1:2:2*nc) = 1:nc;
perm(2:2:2*nc) = nc + (1:nc);
idx{2} = perm;
x = horzcat (real (x), imag (x));
x = x(idx{:});
fmt = [deblank(repmat(fmt, 1, nc)), "\n"];
tmp = sprintf (fmt, permute (x, [2, 1, 3:nd]));
## Put the "i"'s where they are supposed to be.
tmp = regexprep (tmp, " +i\n", "i\n");
tmp = regexprep (tmp, "( +)i", "i$1");
retval = strtrim (char (ostrsplit (tmp(1:end-1), "\n")));
endif
endfunction
%!assert (num2str (123), "123")
%!assert (num2str (1.23), "1.23")
%!assert (num2str (123.456, 4), "123.5")
%!assert (num2str ([1, 1.34; 3, 3.56], "%5.1f"), ["1.0 1.3"; "3.0 3.6"])
%!assert (num2str (1.234 + 27.3i), "1.234+27.3i")
%!assert (num2str ([true false true]), "1 0 1");
%!assert (num2str (19440606), "19440606")
%!assert (num2str (2^33), "8589934592")
%!assert (num2str (-2^33), "-8589934592")
%!assert (num2str (2^33+1i), "8589934592+1i")
%!assert (num2str (-2^33+1i), "-8589934592+1i")
%!assert (num2str (inf), "Inf")
%!assert (num2str ([inf -inf]), "Inf -Inf")
%!assert (num2str ([complex(Inf,0), complex(0,-Inf)]), "Inf+0i 0-Infi")
%!assert (num2str (complex(Inf,1)), "Inf+1i")
%!assert (num2str (complex(1,Inf)), "1+Infi")
%!assert (num2str (nan), "NaN")
%!assert (num2str (complex (NaN, 1)), "NaN+1i")
%!assert (num2str (complex (1, NaN)), "1+NaNi")
%!assert (num2str (NA), "NA")
%!assert (num2str (complex (NA, 1)), "NA+1i")
%!assert (num2str (complex (1, NA)), "1+NAi")
## FIXME: Integers greater than bitmax() should be masked to show just
## 16 digits of precision.
%!xtest
%! assert (num2str (1e23), "100000000000000000000000");
%!error num2str ()
%!error num2str (1, 2, 3)
%!error <X must be a numeric> num2str ({1})
%!error <PRECISION must be a scalar integer> num2str (1, {1})
%!error <PRECISION must be a scalar integer> num2str (1, ones (2))
%!error <PRECISION must be a scalar integer> num2str (1, -1)
%!error <PRECISION must be a scalar integer> num2str (1+1i, {1})
%!error <PRECISION must be a scalar integer> num2str (1+1i, ones (2))
%!error <PRECISION must be a scalar integer> num2str (1+1i, -1)
|