1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
## Copyright (C) 1998-2013 Walter Gautschi
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b})
## @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol})
## @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace})
## @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{})
##
## Numerically evaluate the integral of @var{f} from @var{a} to @var{b}
## using an adaptive Lobatto rule.
## @var{f} is a function handle, inline function, or string
## containing the name of the function to evaluate.
## The function @var{f} must be vectorized and return a vector of output values
## if given a vector of input values.
##
## @var{a} and @var{b} are the lower and upper limits of integration. Both
## limits must be finite.
##
## The optional argument @var{tol} defines the relative tolerance with which
## to perform the integration. The default value is @code{eps}.
##
## The algorithm used by @code{quadl} involves recursively subdividing the
## integration interval.
## If @var{trace} is defined then for each subinterval display: (1) the left
## end of the subinterval, (2) the length of the subinterval, (3) the
## approximation of the integral over the subinterval.
##
## Additional arguments @var{p1}, etc., are passed directly to the function
## @var{f}. To use default values for @var{tol} and @var{trace}, one may pass
## empty matrices ([]).
##
## Reference: W. Gander and W. Gautschi, @cite{Adaptive Quadrature -
## Revisited}, BIT Vol. 40, No. 1, March 2000, pp. 84--101.
## @url{http://www.inf.ethz.ch/personal/gander/}
## @seealso{quad, quadv, quadgk, quadcc, trapz, dblquad, triplequad}
## @end deftypefn
## Author: Walter Gautschi
## Date: 08/03/98
## Reference: Gander, Computermathematik, Birkhaeuser, 1992.
## 2003-08-05 Shai Ayal
## * permission from author to release as GPL
## 2004-02-10 Paul Kienzle
## * renamed to quadl for compatibility
## * replace global variable terminate2 with local function need_warning
## * add paper ref to docs
function q = quadl (f, a, b, tol = [], trace = false, varargin)
if (nargin < 3)
print_usage ();
endif
if (isa (a, "single") || isa (b, "single"))
myeps = eps ("single");
else
myeps = eps;
endif
if (isempty (tol))
tol = myeps;
endif
if (isempty (trace))
trace = false;
endif
if (tol < myeps)
tol = myeps;
endif
## Track whether recursion has occurred
global __quadl_recurse_done__;
__quadl_recurse_done__ = false;
## Track whether warning about machine precision has been issued
global __quadl_need_warning__;
__quadl_need_warning__ = true;
m = (a+b)/2;
h = (b-a)/2;
alpha = sqrt (2/3);
beta = 1/sqrt (5);
x1 = .942882415695480;
x2 = .641853342345781;
x3 = .236383199662150;
x = [a, m-x1*h, m-alpha*h, m-x2*h, m-beta*h, m-x3*h, m, m+x3*h, ...
m+beta*h, m+x2*h, m+alpha*h, m+x1*h, b];
y = feval (f, x, varargin{:});
fa = y(1);
fb = y(13);
i2 = (h/6)*(y(1) + y(13) + 5*(y(5)+y(9)));
i1 = (h/1470)*( 77*(y(1)+y(13))
+ 432*(y(3)+y(11))
+ 625*(y(5)+y(9))
+ 672*y(7));
is = h*( .0158271919734802*(y(1)+y(13))
+.0942738402188500*(y(2)+y(12))
+ .155071987336585*(y(3)+y(11))
+ .188821573960182*(y(4)+y(10))
+ .199773405226859*(y(5)+y(9))
+ .224926465333340*(y(6)+y(8))
+ .242611071901408*y(7));
s = sign (is);
if (s == 0)
s = 1;
endif
erri1 = abs (i1-is);
erri2 = abs (i2-is);
if (erri2 != 0)
R = erri1/erri2;
else
R = 1;
endif
if (R > 0 && R < 1)
tol = tol/R;
endif
is = s * abs (is) * tol/myeps;
if (is == 0)
is = b-a;
endif
q = adaptlobstp (f, a, b, fa, fb, is, trace, varargin{:});
endfunction
## ADAPTLOBSTP Recursive function used by QUADL.
##
## Q = ADAPTLOBSTP('F', A, B, FA, FB, IS, TRACE) tries to
## approximate the integral of F(X) from A to B to
## an appropriate relative error. The argument 'F' is
## a string containing the name of f. The remaining
## arguments are generated by ADAPTLOB or by recursion.
##
## Walter Gautschi, 08/03/98
function q = adaptlobstp (f, a, b, fa, fb, is, trace, varargin)
global __quadl_recurse_done__;
global __quadl_need_warning__;
h = (b-a)/2;
m = (a+b)/2;
alpha = sqrt (2/3);
beta = 1 / sqrt (5);
mll = m-alpha*h;
ml = m-beta*h;
mr = m+beta*h;
mrr = m+alpha*h;
x = [mll, ml, m, mr, mrr];
y = feval (f, x, varargin{:});
fmll = y(1);
fml = y(2);
fm = y(3);
fmr = y(4);
fmrr = y(5);
i2 = (h/6)*(fa + fb + 5*(fml+fmr));
i1 = (h/1470)*(77*(fa+fb) + 432*(fmll+fmrr) + 625*(fml+fmr) + 672*fm);
if ((is+(i1-i2) == is || mll <= a || b <= mrr) && __quadl_recurse_done__)
if ((m <= a || b <= m) && __quadl_need_warning__)
warning ("quadl: interval contains no more machine number");
warning ("quadl: required tolerance may not be met");
__quadl_need_warning__ = false;
endif
q = i1;
if (trace)
disp ([a, b-a, q]);
endif
else
__quadl_recurse_done__ = true;
q = ( adaptlobstp (f, a , mll, fa , fmll, is, trace, varargin{:})
+ adaptlobstp (f, mll, ml , fmll, fml , is, trace, varargin{:})
+ adaptlobstp (f, ml , m , fml , fm , is, trace, varargin{:})
+ adaptlobstp (f, m , mr , fm , fmr , is, trace, varargin{:})
+ adaptlobstp (f, mr , mrr, fmr , fmrr, is, trace, varargin{:})
+ adaptlobstp (f, mrr, b , fmrr, fb , is, trace, varargin{:}));
endif
endfunction
## basic functionality
%!assert (quadl (@(x) sin (x), 0, pi, [], []), 2, -3e-16)
## the values here are very high so it may be unavoidable that this fails
%!assert (quadl (@(x) sin (3*x).*cosh (x).*sinh (x),10,15),
%! 2.588424538641647e+10, -1.1e-14)
## extra parameters
%!assert (quadl (@(x,a,b) sin (a + b*x), 0, 1, [], [], 2, 3),
%! cos(2)/3 - cos(5)/3, -3e-16)
## test different tolerances.
%!assert (quadl (@(x) sin (2 + 3*x).^2, 0, 10, 0.3, []),
%! (60 + sin(4) - sin(64))/12, -0.3)
%!assert (quadl (@(x) sin (2 + 3*x).^2, 0, 10, 0.1, []),
%! (60 + sin(4) - sin(64))/12, -0.1)
|