File: quadl.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (217 lines) | stat: -rw-r--r-- 7,000 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
## Copyright (C) 1998-2013 Walter Gautschi
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b})
## @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol})
## @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace})
## @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{})
##
## Numerically evaluate the integral of @var{f} from @var{a} to @var{b}
## using an adaptive Lobatto rule.
## @var{f} is a function handle, inline function, or string
## containing the name of the function to evaluate.
## The function @var{f} must be vectorized and return a vector of output values
## if given a vector of input values.
##
## @var{a} and @var{b} are the lower and upper limits of integration.  Both
## limits must be finite.
##
## The optional argument @var{tol} defines the relative tolerance with which
## to perform the integration.  The default value is @code{eps}.
##
## The algorithm used by @code{quadl} involves recursively subdividing the
## integration interval.
## If @var{trace} is defined then for each subinterval display: (1) the left
## end of the subinterval, (2) the length of the subinterval, (3) the
## approximation of the integral over the subinterval.
##
## Additional arguments @var{p1}, etc., are passed directly to the function
## @var{f}.  To use default values for @var{tol} and @var{trace}, one may pass
## empty matrices ([]).
##
## Reference: W. Gander and W. Gautschi, @cite{Adaptive Quadrature -
## Revisited}, BIT Vol. 40, No. 1, March 2000, pp. 84--101.
## @url{http://www.inf.ethz.ch/personal/gander/}
## @seealso{quad, quadv, quadgk, quadcc, trapz, dblquad, triplequad}
## @end deftypefn

##   Author: Walter Gautschi
##   Date: 08/03/98
##   Reference: Gander, Computermathematik, Birkhaeuser, 1992.

## 2003-08-05 Shai Ayal
##   * permission from author to release as GPL
## 2004-02-10 Paul Kienzle
##   * renamed to quadl for compatibility
##   * replace global variable terminate2 with local function need_warning
##   * add paper ref to docs

function q = quadl (f, a, b, tol = [], trace = false, varargin)

  if (nargin < 3)
    print_usage ();
  endif

  if (isa (a, "single") || isa (b, "single"))
    myeps = eps ("single");
  else
    myeps = eps;
  endif
  if (isempty (tol))
    tol = myeps;
  endif
  if (isempty (trace))
    trace = false;
  endif
  if (tol < myeps)
    tol = myeps;
  endif

  ## Track whether recursion has occurred
  global __quadl_recurse_done__;
  __quadl_recurse_done__ = false;
  ## Track whether warning about machine precision has been issued
  global __quadl_need_warning__;
  __quadl_need_warning__ = true;

  m = (a+b)/2;
  h = (b-a)/2;
  alpha = sqrt (2/3);
  beta = 1/sqrt (5);

  x1 = .942882415695480;
  x2 = .641853342345781;
  x3 = .236383199662150;

  x = [a, m-x1*h, m-alpha*h, m-x2*h, m-beta*h, m-x3*h, m, m+x3*h, ...
       m+beta*h, m+x2*h, m+alpha*h, m+x1*h, b];

  y = feval (f, x, varargin{:});

  fa = y(1);
  fb = y(13);

  i2 = (h/6)*(y(1) + y(13) + 5*(y(5)+y(9)));

  i1 = (h/1470)*(   77*(y(1)+y(13))
                 + 432*(y(3)+y(11))
                 + 625*(y(5)+y(9))
                 + 672*y(7));

  is = h*( .0158271919734802*(y(1)+y(13))
          +.0942738402188500*(y(2)+y(12))
          + .155071987336585*(y(3)+y(11))
          + .188821573960182*(y(4)+y(10))
          + .199773405226859*(y(5)+y(9))
          + .224926465333340*(y(6)+y(8))
          + .242611071901408*y(7));

  s = sign (is);
  if (s == 0)
    s = 1;
  endif
  erri1 = abs (i1-is);
  erri2 = abs (i2-is);
  if (erri2 != 0)
    R = erri1/erri2;
  else
    R = 1;
  endif
  if (R > 0 && R < 1)
    tol = tol/R;
  endif
  is = s * abs (is) * tol/myeps;
  if (is == 0)
    is = b-a;
  endif

  q = adaptlobstp (f, a, b, fa, fb, is, trace, varargin{:});

endfunction

## ADAPTLOBSTP  Recursive function used by QUADL.
##
##   Q = ADAPTLOBSTP('F', A, B, FA, FB, IS, TRACE) tries to
##   approximate the integral of F(X) from A to B to
##   an appropriate relative error.  The argument 'F' is
##   a string containing the name of f.  The remaining
##   arguments are generated by ADAPTLOB or by recursion.
##
##   Walter Gautschi, 08/03/98

function q = adaptlobstp (f, a, b, fa, fb, is, trace, varargin)
  global __quadl_recurse_done__;
  global __quadl_need_warning__;

  h = (b-a)/2;
  m = (a+b)/2;
  alpha = sqrt (2/3);
  beta = 1 / sqrt (5);
  mll = m-alpha*h;
  ml  = m-beta*h;
  mr  = m+beta*h;
  mrr = m+alpha*h;
  x = [mll, ml, m, mr, mrr];
  y = feval (f, x, varargin{:});
  fmll = y(1);
  fml  = y(2);
  fm   = y(3);
  fmr  = y(4);
  fmrr = y(5);
  i2 = (h/6)*(fa + fb + 5*(fml+fmr));
  i1 = (h/1470)*(77*(fa+fb) + 432*(fmll+fmrr) + 625*(fml+fmr) + 672*fm);
  if ((is+(i1-i2) == is || mll <= a || b <= mrr) && __quadl_recurse_done__)
    if ((m <= a || b <= m) && __quadl_need_warning__)
      warning ("quadl: interval contains no more machine number");
      warning ("quadl: required tolerance may not be met");
      __quadl_need_warning__ = false;
    endif
    q = i1;
    if (trace)
      disp ([a, b-a, q]);
    endif
  else
    __quadl_recurse_done__ = true;
    q = (  adaptlobstp (f, a  , mll, fa  , fmll, is, trace, varargin{:})
         + adaptlobstp (f, mll, ml , fmll, fml , is, trace, varargin{:})
         + adaptlobstp (f, ml , m  , fml , fm  , is, trace, varargin{:})
         + adaptlobstp (f, m  , mr , fm  , fmr , is, trace, varargin{:})
         + adaptlobstp (f, mr , mrr, fmr , fmrr, is, trace, varargin{:})
         + adaptlobstp (f, mrr, b  , fmrr, fb  , is, trace, varargin{:}));
  endif
endfunction


## basic functionality
%!assert (quadl (@(x) sin (x), 0, pi, [], []), 2, -3e-16)

## the values here are very high so it may be unavoidable that this fails
%!assert (quadl (@(x) sin (3*x).*cosh (x).*sinh (x),10,15),
%!         2.588424538641647e+10, -1.1e-14)

## extra parameters
%!assert (quadl (@(x,a,b) sin (a + b*x), 0, 1, [], [], 2, 3),
%!        cos(2)/3 - cos(5)/3, -3e-16)

## test different tolerances.
%!assert (quadl (@(x) sin (2 + 3*x).^2, 0, 10, 0.3, []),
%!        (60 + sin(4) - sin(64))/12, -0.3)
%!assert (quadl (@(x) sin (2 + 3*x).^2, 0, 10, 0.1, []),
%!        (60 + sin(4) - sin(64))/12, -0.1)