1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
## Copyright (C) 2008-2013 David Bateman
## Copyright (C) 2012 Alexander Klein
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{q} =} quadv (@var{f}, @var{a}, @var{b})
## @deftypefnx {Function File} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol})
## @deftypefnx {Function File} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace})
## @deftypefnx {Function File} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{})
## @deftypefnx {Function File} {[@var{q}, @var{nfun}] =} quadv (@dots{})
##
## Numerically evaluate the integral of @var{f} from @var{a} to @var{b}
## using an adaptive Simpson's rule.
## @var{f} is a function handle, inline function, or string
## containing the name of the function to evaluate.
## @code{quadv} is a vectorized version of @code{quad} and the function
## defined by @var{f} must accept a scalar or vector as input and return a
## scalar, vector, or array as output.
##
## @var{a} and @var{b} are the lower and upper limits of integration. Both
## limits must be finite.
##
## The optional argument @var{tol} defines the tolerance used to stop
## the adaptation procedure. The default value is @math{1e^{-6}}.
##
## The algorithm used by @code{quadv} involves recursively subdividing the
## integration interval and applying Simpson's rule on each subinterval.
## If @var{trace} is true then after computing each of these partial
## integrals display: (1) the total number of function evaluations,
## (2) the left end of the subinterval, (3) the length of the subinterval,
## (4) the approximation of the integral over the subinterval.
##
## Additional arguments @var{p1}, etc., are passed directly to the function
## @var{f}. To use default values for @var{tol} and @var{trace}, one may pass
## empty matrices ([]).
##
## The result of the integration is returned in @var{q}. @var{nfun} indicates
## the number of function evaluations that were made.
##
## Note: @code{quadv} is written in Octave's scripting language and can be
## used recursively in @code{dblquad} and @code{triplequad}, unlike the
## similar @code{quad} function.
## @seealso{quad, quadl, quadgk, quadcc, trapz, dblquad, triplequad}
## @end deftypefn
function [q, nfun] = quadv (f, a, b, tol, trace, varargin)
## TODO: Make norm for convergence testing configurable
if (nargin < 3)
print_usage ();
endif
if (nargin < 4)
tol = [];
endif
if (nargin < 5)
trace = [];
endif
if (isa (a, "single") || isa (b, "single"))
myeps = eps ("single");
else
myeps = eps;
endif
if (isempty (tol))
tol = 1e-6;
endif
if (isempty (trace))
trace = 0;
endif
## Split the interval into 3 abscissa, and apply a 3 point Simpson's rule
c = (a + b) / 2;
fa = feval (f, a, varargin{:});
fc = feval (f, c, varargin{:});
fb = feval (f, b, varargin{:});
nfun = 3;
## If have edge singularities, move edge point by eps*(b-a) as
## discussed in Shampine paper used to implement quadgk
if (any (isinf (fa(:))))
fa = feval (f, a + myeps * (b-a), varargin{:});
endif
if (any (isinf (fb(:))))
fb = feval (f, b - myeps * (b-a), varargin{:});
endif
h = (b - a);
q = (b - a) / 6 * (fa + 4 * fc + fb);
[q, nfun, hmin] = simpsonstp (f, a, b, c, fa, fb, fc, q, nfun, abs (h),
tol, trace, varargin{:});
if (nfun > 10000)
warning ("maximum iteration count reached");
elseif (any (! isfinite (q(:))))
warning ("infinite or NaN function evaluations were returned");
elseif (hmin < (b - a) * myeps)
warning ("minimum step size reached -- possibly singular integral");
endif
endfunction
function [q, nfun, hmin] = simpsonstp (f, a, b, c, fa, fb, fc, q0,
nfun, hmin, tol, trace, varargin)
if (nfun > 10000)
q = q0;
else
d = (a + c) / 2;
e = (c + b) / 2;
fd = feval (f, d, varargin{:});
fe = feval (f, e, varargin{:});
nfun += 2;
q1 = (c - a) / 6 * (fa + 4 * fd + fc);
q2 = (b - c) / 6 * (fc + 4 * fe + fb);
q = q1 + q2;
if (abs(a - c) < hmin)
hmin = abs (a - c);
endif
if (trace)
disp ([nfun, a, b-a, q]);
endif
## Force at least one adpative step.
## Not vectorizing q-q0 in the norm provides a more rigid criterion for
## matrix-valued functions.
if (nfun == 5 || norm (q - q0, Inf) > tol)
[q1, nfun, hmin] = simpsonstp (f, a, c, d, fa, fc, fd, q1, nfun, hmin,
tol, trace, varargin{:});
[q2, nfun, hmin] = simpsonstp (f, c, b, e, fc, fb, fe, q2, nfun, hmin,
tol, trace, varargin{:});
q = q1 + q2;
endif
endif
endfunction
%!assert (quadv (@sin, 0, 2 * pi), 0, 1e-5)
%!assert (quadv (@sin, 0, pi), 2, 1e-5)
%% Handles weak singularities at the edge
%!assert (quadv (@(x) 1 ./ sqrt (x), 0, 1), 2, 1e-5)
%% Handles vector-valued functions
%!assert (quadv (@(x) [(sin (x)), (sin (2 * x))], 0, pi), [2, 0], 1e-5)
%% Handles matrix-valued functions
%!assert (quadv (@(x) [ x, x, x; x, 1./sqrt(x), x; x, x, x ], 0, 1 ), [0.5, 0.5, 0.5; 0.5, 2, 0.5; 0.5, 0.5, 0.5], 1e-5)
|