File: quadv.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (163 lines) | stat: -rw-r--r-- 5,877 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
## Copyright (C) 2008-2013 David Bateman
## Copyright (C) 2012 Alexander Klein
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{q} =} quadv (@var{f}, @var{a}, @var{b})
## @deftypefnx {Function File} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol})
## @deftypefnx {Function File} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace})
## @deftypefnx {Function File} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{})
## @deftypefnx {Function File} {[@var{q}, @var{nfun}] =} quadv (@dots{})
##
## Numerically evaluate the integral of @var{f} from @var{a} to @var{b}
## using an adaptive Simpson's rule.
## @var{f} is a function handle, inline function, or string
## containing the name of the function to evaluate.
## @code{quadv} is a vectorized version of @code{quad} and the function
## defined by @var{f} must accept a scalar or vector as input and return a
## scalar, vector, or array as output.
##
## @var{a} and @var{b} are the lower and upper limits of integration.  Both
## limits must be finite.
##
## The optional argument @var{tol} defines the tolerance used to stop
## the adaptation procedure.  The default value is @math{1e^{-6}}.
##
## The algorithm used by @code{quadv} involves recursively subdividing the
## integration interval and applying Simpson's rule on each subinterval.
## If @var{trace} is true then after computing each of these partial
## integrals display: (1) the total number of function evaluations,
## (2) the left end of the subinterval, (3) the length of the subinterval,
## (4) the approximation of the integral over the subinterval.
##
## Additional arguments @var{p1}, etc., are passed directly to the function
## @var{f}.  To use default values for @var{tol} and @var{trace}, one may pass
## empty matrices ([]).
##
## The result of the integration is returned in @var{q}.  @var{nfun} indicates
## the number of function evaluations that were made.
##
## Note: @code{quadv} is written in Octave's scripting language and can be
## used recursively in @code{dblquad} and @code{triplequad}, unlike the
## similar @code{quad} function.
## @seealso{quad, quadl, quadgk, quadcc, trapz, dblquad, triplequad}
## @end deftypefn

function [q, nfun] = quadv (f, a, b, tol, trace, varargin)
  ## TODO: Make norm for convergence testing configurable

  if (nargin < 3)
    print_usage ();
  endif
  if (nargin < 4)
    tol = [];
  endif
  if (nargin < 5)
    trace = [];
  endif
  if (isa (a, "single") || isa (b, "single"))
    myeps = eps ("single");
  else
    myeps = eps;
  endif
  if (isempty (tol))
    tol = 1e-6;
  endif
  if (isempty (trace))
    trace = 0;
  endif

  ## Split the interval into 3 abscissa, and apply a 3 point Simpson's rule
  c = (a + b) / 2;
  fa = feval (f, a, varargin{:});
  fc = feval (f, c, varargin{:});
  fb = feval (f, b, varargin{:});
  nfun = 3;

  ## If have edge singularities, move edge point by eps*(b-a) as
  ## discussed in Shampine paper used to implement quadgk
  if (any (isinf (fa(:))))
    fa = feval (f, a + myeps * (b-a), varargin{:});
  endif
  if (any (isinf (fb(:))))
    fb = feval (f, b - myeps * (b-a), varargin{:});
  endif

  h = (b - a);
  q = (b - a) / 6 * (fa + 4 * fc + fb);

  [q, nfun, hmin] = simpsonstp (f, a, b, c, fa, fb, fc, q, nfun, abs (h),
                                tol, trace, varargin{:});

  if (nfun > 10000)
    warning ("maximum iteration count reached");
  elseif (any (! isfinite (q(:))))
    warning ("infinite or NaN function evaluations were returned");
  elseif (hmin < (b - a) * myeps)
    warning ("minimum step size reached -- possibly singular integral");
  endif
endfunction

function [q, nfun, hmin] = simpsonstp (f, a, b, c, fa, fb, fc, q0,
                                       nfun, hmin, tol, trace, varargin)
  if (nfun > 10000)
    q = q0;
  else
    d = (a + c) / 2;
    e = (c + b) / 2;
    fd = feval (f, d, varargin{:});
    fe = feval (f, e, varargin{:});
    nfun += 2;
    q1 = (c - a) / 6 * (fa + 4 * fd + fc);
    q2 = (b - c) / 6 * (fc + 4 * fe + fb);
    q = q1 + q2;

    if (abs(a -  c) < hmin)
      hmin = abs (a - c);
    endif

    if (trace)
      disp ([nfun, a, b-a, q]);
    endif

    ## Force at least one adpative step.
    ## Not vectorizing q-q0 in the norm provides a more rigid criterion for
    ## matrix-valued functions.
    if (nfun == 5 || norm (q - q0, Inf) > tol)
      [q1, nfun, hmin] = simpsonstp (f, a, c, d, fa, fc, fd, q1, nfun, hmin,
                                    tol, trace, varargin{:});
      [q2, nfun, hmin] = simpsonstp (f, c, b, e, fc, fb, fe, q2, nfun, hmin,
                                     tol, trace, varargin{:});
      q = q1 + q2;
    endif
  endif
endfunction


%!assert (quadv (@sin, 0, 2 * pi), 0, 1e-5)
%!assert (quadv (@sin, 0, pi), 2, 1e-5)

%% Handles weak singularities at the edge
%!assert (quadv (@(x) 1 ./ sqrt (x), 0, 1), 2, 1e-5)

%% Handles vector-valued functions
%!assert (quadv (@(x) [(sin (x)), (sin (2 * x))], 0, pi), [2, 0], 1e-5)

%% Handles matrix-valued functions
%!assert (quadv (@(x) [ x, x, x; x, 1./sqrt(x), x; x, x, x ], 0, 1 ), [0.5, 0.5, 0.5; 0.5, 2, 0.5; 0.5, 0.5, 0.5], 1e-5)