1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
## Copyright (C) 2001-2013 Paul Kienzle
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{s} =} rat (@var{x}, @var{tol})
## @deftypefnx {Function File} {[@var{n}, @var{d}] =} rat (@var{x}, @var{tol})
##
## Find a rational approximation to @var{x} within the tolerance defined
## by @var{tol} using a continued fraction expansion. For example:
##
## @example
## @group
## rat (pi) = 3 + 1/(7 + 1/16) = 355/113
## rat (e) = 3 + 1/(-4 + 1/(2 + 1/(5 + 1/(-2 + 1/(-7)))))
## = 1457/536
## @end group
## @end example
##
## Called with two arguments returns the numerator and denominator separately
## as two matrices.
## @seealso{rats}
## @end deftypefn
function [n,d] = rat (x,tol)
if (nargin != [1,2] || nargout > 2)
print_usage ();
endif
y = x(:);
## Replace Inf with 0 while calculating ratios.
y(isinf(y)) = 0;
## default norm
if (nargin < 2)
tol = 1e-6 * norm (y,1);
endif
## First step in the approximation is the integer portion
## First element in the continued fraction.
n = round (y);
d = ones (size (y));
frac = y-n;
lastn = ones (size (y));
lastd = zeros (size (y));
nd = ndims (y);
nsz = numel (y);
steps = zeros ([nsz, 0]);
## Grab new factors until all continued fractions converge.
while (1)
## Determine which fractions have not yet converged.
idx = find (abs (y-n./d) >= tol);
if (isempty (idx))
if (isempty (steps))
steps = NaN (nsz, 1);
endif
break;
endif
## Grab the next step in the continued fraction.
flip = 1./frac(idx);
## Next element in the continued fraction.
step = round (flip);
if (nargout < 2)
tsteps = NaN (nsz, 1);
tsteps (idx) = step;
steps = [steps, tsteps];
endif
frac(idx) = flip-step;
## Update the numerator/denominator.
nextn = n;
nextd = d;
n(idx) = n(idx).*step + lastn(idx);
d(idx) = d(idx).*step + lastd(idx);
lastn = nextn;
lastd = nextd;
endwhile
if (nargout == 2)
## Move the minus sign to the top.
n = n .* sign (d);
d = abs (d);
## Return the same shape as you receive.
n = reshape (n, size (x));
d = reshape (d, size (x));
## Use 1/0 for Inf.
n(isinf (x)) = sign (x(isinf (x)));
d(isinf (x)) = 0;
## Reshape the output.
n = reshape (n, size (x));
d = reshape (d, size (x));
else
n = "";
nsteps = columns (steps);
for i = 1: nsz
s = [int2str(y(i))," "];
j = 1;
while (true)
step = steps(i, j++);
if (isnan (step))
break;
endif
if (j > nsteps || isnan (steps(i, j)))
if (step < 0)
s = [s(1:end-1), " + 1/(", int2str(step), ")"];
else
s = [s(1:end-1), " + 1/", int2str(step)];
endif
break;
else
s = [s(1:end-1), " + 1/(", int2str(step), ")"];
endif
endwhile
s = [s, repmat(")", 1, j-2)];
n_nc = columns (n);
s_nc = columns (s);
if (n_nc > s_nc)
s(:,s_nc+1:n_nc) = " ";
elseif (s_nc > n_nc)
n(:,n_nc+1:s_nc) = " ";
endif
n = cat (1, n, s);
endfor
endif
endfunction
%!test
%! [n, d] = rat ([0.5, 0.3, 1/3]);
%! assert (n, [1, 3, 1]);
%! assert (d, [2, 10, 3]);
%!error rat ();
%!error rat (1, 2, 3);
|