File: rat.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (162 lines) | stat: -rw-r--r-- 4,022 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
## Copyright (C) 2001-2013 Paul Kienzle
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{s} =} rat (@var{x}, @var{tol})
## @deftypefnx {Function File} {[@var{n}, @var{d}] =} rat (@var{x}, @var{tol})
##
## Find a rational approximation to @var{x} within the tolerance defined
## by @var{tol} using a continued fraction expansion.  For example:
##
## @example
## @group
## rat (pi) = 3 + 1/(7 + 1/16) = 355/113
## rat (e) = 3 + 1/(-4 + 1/(2 + 1/(5 + 1/(-2 + 1/(-7)))))
##         = 1457/536
## @end group
## @end example
##
## Called with two arguments returns the numerator and denominator separately
## as two matrices.
## @seealso{rats}
## @end deftypefn

function [n,d] = rat (x,tol)

  if (nargin != [1,2] || nargout > 2)
    print_usage ();
  endif

  y = x(:);

  ## Replace Inf with 0 while calculating ratios.
  y(isinf(y)) = 0;

  ## default norm
  if (nargin < 2)
    tol = 1e-6 * norm (y,1);
  endif

  ## First step in the approximation is the integer portion

  ## First element in the continued fraction.
  n = round (y);
  d = ones (size (y));
  frac = y-n;
  lastn = ones (size (y));
  lastd = zeros (size (y));

  nd = ndims (y);
  nsz = numel (y);
  steps = zeros ([nsz, 0]);

  ## Grab new factors until all continued fractions converge.
  while (1)
    ## Determine which fractions have not yet converged.
    idx = find (abs (y-n./d) >= tol);
    if (isempty (idx))
      if (isempty (steps))
        steps = NaN (nsz, 1);
      endif
      break;
    endif

    ## Grab the next step in the continued fraction.
    flip = 1./frac(idx);
    ## Next element in the continued fraction.
    step = round (flip);

    if (nargout < 2)
      tsteps = NaN (nsz, 1);
      tsteps (idx) = step;
      steps = [steps, tsteps];
    endif

    frac(idx) = flip-step;

    ## Update the numerator/denominator.
    nextn = n;
    nextd = d;
    n(idx) = n(idx).*step + lastn(idx);
    d(idx) = d(idx).*step + lastd(idx);
    lastn = nextn;
    lastd = nextd;
  endwhile

  if (nargout == 2)
    ## Move the minus sign to the top.
    n = n .* sign (d);
    d = abs (d);

    ## Return the same shape as you receive.
    n = reshape (n, size (x));
    d = reshape (d, size (x));

    ## Use 1/0 for Inf.
    n(isinf (x)) = sign (x(isinf (x)));
    d(isinf (x)) = 0;

    ## Reshape the output.
    n = reshape (n, size (x));
    d = reshape (d, size (x));
  else
    n = "";
    nsteps = columns (steps);
    for i = 1: nsz
      s = [int2str(y(i))," "];
      j = 1;

      while (true)
        step = steps(i, j++);
        if (isnan (step))
          break;
        endif
        if (j > nsteps || isnan (steps(i, j)))
          if (step < 0)
            s = [s(1:end-1), " + 1/(", int2str(step), ")"];
          else
            s = [s(1:end-1), " + 1/", int2str(step)];
          endif
          break;
        else
          s = [s(1:end-1), " + 1/(", int2str(step), ")"];
        endif
      endwhile
      s = [s, repmat(")", 1, j-2)];
      n_nc = columns (n);
      s_nc = columns (s);
      if (n_nc > s_nc)
        s(:,s_nc+1:n_nc) = " ";
      elseif (s_nc > n_nc)
        n(:,n_nc+1:s_nc) = " ";
      endif
      n = cat (1, n, s);
    endfor
  endif

endfunction


%!test
%! [n, d] = rat ([0.5, 0.3, 1/3]);
%! assert (n, [1, 3, 1]);
%! assert (d, [2, 10, 3]);

%!error rat ();
%!error rat (1, 2, 3);