File: sortrows.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (137 lines) | stat: -rw-r--r-- 3,979 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
## Copyright (C) 2000-2013 Daniel Calvelo
## Copyright (C) 2009 Jaroslav Hajek
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{s}, @var{i}] =} sortrows (@var{A})
## @deftypefnx {Function File} {[@var{s}, @var{i}] =} sortrows (@var{A}, @var{c})
## Sort the rows of the matrix @var{A} according to the order of the
## columns specified in @var{c}.  If @var{c} is omitted, a
## lexicographical sort is used.  By default ascending order is used
## however if elements of @var{c} are negative then the corresponding
## column is sorted in descending order.
## @seealso{sort}
## @end deftypefn

## Author: Daniel Calvelo, Paul Kienzle
## Adapted-by: jwe

function [s, i] = sortrows (A, c)

  if (nargin < 1 || nargin > 2)
    print_usage ();
  endif

  if (nargin == 2)
    if (! (isnumeric (c) && isvector (c))) 
      error ("sortrows: C must be a numeric vector");
    elseif (any (c == 0) || any (abs (c) > columns (A)))
      error ("sortrows: all elements of C must be in the range [1, columns (A)]");
    endif
  endif

  default_mode = "ascend";
  reverse_mode = "descend";

  if (issparse (A))
    ## FIXME: Eliminate this case once __sort_rows_idx__ is fixed to
    ##        handle sparse matrices.
    if (nargin == 1)
      i = sort_rows_idx_generic (default_mode, reverse_mode, A);
    else
      i = sort_rows_idx_generic (default_mode, reverse_mode, A, c);
    endif
  elseif (nargin == 1)
    i = __sort_rows_idx__ (A, default_mode);
  elseif (all (c > 0))
    i = __sort_rows_idx__ (A(:,c), default_mode);
  elseif (all (c < 0))
    i = __sort_rows_idx__ (A(:,-c), reverse_mode);
  else
    ## Otherwise, fall back to the old algorithm.
    i = sort_rows_idx_generic (default_mode, reverse_mode, A, c);
  endif

  ## Only bother to compute s if needed.
  if (isargout (1))
    s = A(i,:);
  endif

endfunction

function i = sort_rows_idx_generic (default_mode, reverse_mode, m, c)

  if (nargin == 3)
    indices = [1:columns(m)]';
    mode(1:columns(m)) = {default_mode};
  else
    for j = 1:length (c);
      if (c(j) < 0)
        mode{j} = reverse_mode;
      else
        mode{j} = default_mode;
      endif
    endfor
    indices = abs (c(:));
  endif

  ## Since sort is 'stable' the order of identical elements will be
  ## preserved, so by traversing the sort indices in reverse order we
  ## will make sure that identical elements in index i are subsorted by
  ## index j.
  indices = flipud (indices);
  mode = flipud (mode');
  i = [1:rows(m)]';
  for j = 1:length (indices);
    [~, idx] = sort (m(i, indices(j)), mode{j});
    i = i(idx);
  endfor

endfunction


%!test
%! m = [1, 1; 1, 2; 3, 6; 2, 7];
%! c = [1, -2];
%! [x, idx] = sortrows (m, c);
%! [sx, sidx] = sortrows (sparse (m), c);
%! assert (x, [1, 2; 1, 1; 2, 7; 3, 6]);
%! assert (idx, [2; 1; 4; 3]);
%! assert (issparse (sx));
%! assert (x, full (sx));
%! assert (idx, sidx);

%!test
%! m = [1, 0, 0, 4];
%! c = 1;
%! [x, idx] = sortrows (m, c);
%! [sx, sidx] = sortrows (sparse (m), c);
%! assert (x, m);
%! assert (idx, 1);
%! assert (issparse (sx));
%! assert (x, full (sx));
%! assert (idx, sidx);

%% Test input validation
%!error sortrows ()
%!error sortrows (1, 2, 3)
%!error sortrows (1, "ascend")
%!error sortrows (1, ones (2,2))
%!error sortrows (1, 0)
%!error sortrows (1, 2)