1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
## Copyright (C) 2007-2013 David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{T} =} delaunayn (@var{pts})
## @deftypefnx {Function File} {@var{T} =} delaunayn (@var{pts}, @var{options})
## Compute the Delaunay triangulation for an N-dimensional set of points.
## The Delaunay triangulation is a tessellation of the convex hull of a set
## of points such that no N-sphere defined by the N-triangles contains
## any other points from the set.
##
## The input matrix @var{pts} of size [n, dim] contains n points in a space of
## dimension dim. The return matrix @var{T} has size [m, dim+1]. Each row
## of @var{T} contains a set of indices back into the original set of points
## @var{pts} which describes a simplex of dimension dim. For example, a 2-D
## simplex is a triangle and 3-D simplex is a tetrahedron.
##
## An optional second argument, which must be a string or cell array of strings,
## contains options passed to the underlying qhull command.
## See the documentation for the Qhull library for details
## @url{http://www.qhull.org/html/qh-quick.htm#options}.
## The default options depend on the dimension of the input:
##
## @itemize
## @item 2-D and 3-D: @var{options} = @code{@{"Qt", "Qbb", "Qc", "Qz"@}}
##
## @item 4-D and higher: @var{options} = @code{@{"Qt", "Qbb", "Qc", "Qx"@}}
## @end itemize
##
## If @var{options} is not present or @code{[]} then the default arguments are
## used. Otherwise, @var{options} replaces the default argument list.
## To append user options to the defaults it is necessary to repeat the
## default arguments in @var{options}. Use a null string to pass no arguments.
##
## @seealso{delaunay, delaunay3, convhulln, voronoin, trimesh, tetramesh}
## @end deftypefn
function T = delaunayn (pts, varargin)
if (nargin < 1)
print_usage ();
endif
T = __delaunayn__ (pts, varargin{:});
if (isa (pts, "single"))
myeps = eps ("single");
else
myeps = eps;
endif
## Try to remove the zero volume simplices. The volume of the i-th simplex is
## given by abs(det(pts(T(i,1:end-1),:)-pts(T(i,2:end),:)))/prod(1:n)
## (reference http://en.wikipedia.org/wiki/Simplex). Any simplex with a
## relative volume less than some arbitrary criteria is rejected. The
## criteria we use is the volume of the simplex corresponding to an
## orthogonal simplex is equal edge length all equal to the edge length of
## the original simplex. If the relative volume is 1e3*eps then the simplex
## is rejected. Note division of the two volumes means that the factor
## prod(1:n) is dropped.
idx = [];
[nt, n] = size (T);
## FIXME: Vectorize this for loop or convert to delaunayn to .oct function
for i = 1:nt
X = pts(T(i,1:end-1),:) - pts(T(i,2:end),:);
if (abs (det (X)) / sqrt (sum (X .^ 2, 2)) < 1e3 * myeps)
idx(end+1) = i;
endif
endfor
T(idx,:) = [];
endfunction
%% FIXME: Need tests for delaunayn
%% FIXME: Need input validation tests
|