1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
## Copyright (C) 1999-2013 Kai Habel
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{zi} =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi})
## @deftypefnx {Function File} {@var{zi} =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{method})
## @deftypefnx {Function File} {[@var{xi}, @var{yi}, @var{zi}] =} griddata (@dots{})
##
## Generate a regular mesh from irregular data using interpolation.
## The function is defined by @code{@var{z} = f (@var{x}, @var{y})}.
## Inputs @code{@var{x}, @var{y}, @var{z}} are vectors of the same length
## or @code{@var{x}, @var{y}} are vectors and @code{@var{z}} is matrix.
##
## The interpolation points are all @code{(@var{xi}, @var{yi})}. If
## @var{xi}, @var{yi} are vectors then they are made into a 2-D mesh.
##
## The interpolation method can be @qcode{"nearest"}, @qcode{"cubic"} or
## @qcode{"linear"}. If method is omitted it defaults to @qcode{"linear"}.
## @seealso{griddata3, griddatan, delaunay}
## @end deftypefn
## Author: Kai Habel <kai.habel@gmx.de>
## Adapted-by: Alexander Barth <barth.alexander@gmail.com>
## xi and yi are not "meshgridded" if both are vectors
## of the same size (for compatibility)
function [rx, ry, rz] = griddata (x, y, z, xi, yi, method = "linear")
if (nargin < 5 || nargin > 7)
print_usage ();
endif
if (ischar (method))
method = tolower (method);
endif
## Meshgrid if x and y are vectors but z is matrix
if (isvector (x) && isvector (y) && all ([numel(y), numel(x)] == size (z)))
[x, y] = meshgrid (x, y);
endif
if (isvector (x) && isvector (y) && isvector (z))
if (! isequal (length (x), length (y), length (z)))
error ("griddata: X, Y, and Z must be vectors of the same length");
endif
elseif (! size_equal (x, y, z))
error ("griddata: lengths of X, Y must match the columns and rows of Z");
endif
## Meshgrid xi and yi if they are a row and column vector.
if (rows (xi) == 1 && columns (yi) == 1)
[xi, yi] = meshgrid (xi, yi);
elseif (isvector (xi) && isvector (yi))
## Otherwise, convert to column vectors
xi = xi(:);
yi = yi(:);
endif
if (! size_equal (xi, yi))
error ("griddata: XI and YI must be vectors or matrices of same size");
endif
x = x(:);
y = y(:);
z = z(:);
## Triangulate data.
tri = delaunay (x, y);
zi = NaN (size (xi));
if (strcmp (method, "cubic"))
error ("griddata: cubic interpolation not yet implemented");
elseif (strcmp (method, "nearest"))
## Search index of nearest point.
idx = dsearch (x, y, tri, xi, yi);
valid = !isnan (idx);
zi(valid) = z(idx(valid));
elseif (strcmp (method, "linear"))
## Search for every point the enclosing triangle.
tri_list = tsearch (x, y, tri, xi(:), yi(:));
## Only keep the points within triangles.
valid = !isnan (tri_list);
tri_list = tri_list(valid);
nr_t = rows (tri_list);
tri = tri(tri_list,:);
## Assign x,y,z for each point of triangle.
x1 = x(tri(:,1));
x2 = x(tri(:,2));
x3 = x(tri(:,3));
y1 = y(tri(:,1));
y2 = y(tri(:,2));
y3 = y(tri(:,3));
z1 = z(tri(:,1));
z2 = z(tri(:,2));
z3 = z(tri(:,3));
## Calculate norm vector.
N = cross ([x2-x1, y2-y1, z2-z1], [x3-x1, y3-y1, z3-z1]);
## Normalize.
N = diag (norm (N, "rows")) \ N;
## Calculate D of plane equation
## Ax+By+Cz+D = 0;
D = -(N(:,1) .* x1 + N(:,2) .* y1 + N(:,3) .* z1);
## Calculate zi by solving plane equation for xi, yi.
zi(valid) = -(N(:,1).*xi(:)(valid) + N(:,2).*yi(:)(valid) + D) ./ N(:,3);
else
error ("griddata: unknown interpolation METHOD");
endif
if (nargout == 3)
rx = xi;
ry = yi;
rz = zi;
elseif (nargout == 1)
rx = zi;
elseif (nargout == 0)
mesh (xi, yi, zi);
endif
endfunction
%!demo
%! clf;
%! colormap ("default");
%! x = 2*rand (100,1) - 1;
%! y = 2*rand (size (x)) - 1;
%! z = sin (2*(x.^2 + y.^2));
%! [xx,yy] = meshgrid (linspace (-1,1,32));
%! griddata (x,y,z,xx,yy);
%! title ("nonuniform grid sampled at 100 points");
%!demo
%! clf;
%! colormap ("default");
%! x = 2*rand (1000,1) - 1;
%! y = 2*rand (size (x)) - 1;
%! z = sin (2*(x.^2 + y.^2));
%! [xx,yy] = meshgrid (linspace (-1,1,32));
%! griddata (x,y,z,xx,yy);
%! title ("nonuniform grid sampled at 1000 points");
%!demo
%! clf;
%! colormap ("default");
%! x = 2*rand (1000,1) - 1;
%! y = 2*rand (size (x)) - 1;
%! z = sin (2*(x.^2 + y.^2));
%! [xx,yy] = meshgrid (linspace (-1,1,32));
%! griddata (x,y,z,xx,yy,"nearest");
%! title ("nonuniform grid sampled at 1000 points with nearest neighbor");
%!testif HAVE_QHULL
%! [xx,yy] = meshgrid (linspace (-1,1,32));
%! x = xx(:);
%! x = x + 10*(2*round (rand (size (x))) - 1) * eps;
%! y = yy(:);
%! y = y + 10*(2*round (rand (size (y))) - 1) * eps;
%! z = sin (2*(x.^2 + y.^2));
%! zz = griddata (x,y,z,xx,yy,"linear");
%! zz2 = sin (2*(xx.^2 + yy.^2));
%! zz2(isnan (zz)) = NaN;
%! assert (zz, zz2, 100*eps);
%% Test input validation
%!error griddata ()
%!error griddata (1)
%!error griddata (1,2)
%!error griddata (1,2,3)
%!error griddata (1,2,3,4)
%!error griddata (1,2,3,4,5,6,7)
%!error <vectors of the same length> griddata (1:3, 1:3, 1:4, 1:3, 1:3)
%!error <vectors of the same length> griddata (1:3, 1:4, 1:3, 1:3, 1:3)
%!error <vectors of the same length> griddata (1:4, 1:3, 1:3, 1:3, 1:3)
%!error <the columns and rows of Z> griddata (1:4, 1:3, ones (4,4), 1:3, 1:3)
%!error <the columns and rows of Z> griddata (1:4, 1:3, ones (3,5), 1:3, 1:3)
%!error <matrices of same size> griddata (1:3, 1:3, 1:3, 1:4, 1:3)
%!error <matrices of same size> griddata (1:3, 1:3, 1:3, 1:3, 1:4)
|