1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
## Copyright (C) 2007-2013 David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{yi} =} griddatan (@var{x}, @var{y}, @var{xi})
## @deftypefnx {Function File} {@var{yi} =} griddatan (@var{x}, @var{y}, @var{xi}, @var{method})
## @deftypefnx {Function File} {@var{yi} =} griddatan (@var{x}, @var{y}, @var{xi}, @var{method}, @var{options})
##
## Generate a regular mesh from irregular data using interpolation.
## The function is defined by @code{@var{y} = f (@var{x})}.
## The interpolation points are all @var{xi}.
##
## The interpolation method can be @qcode{"nearest"} or @qcode{"linear"}.
## If method is omitted it defaults to @qcode{"linear"}.
##
## The optional argument @var{options} is passed directly to Qhull when
## computing the Delaunay triangulation used for interpolation. See
## @code{delaunayn} for information on the defaults and how to pass different
## values.
## @seealso{griddata, griddata3, delaunayn}
## @end deftypefn
## Author: David Bateman <dbateman@free.fr>
function yi = griddatan (x, y, xi, method = "linear", varargin)
if (nargin < 3)
print_usage ();
endif
if (ischar (method))
method = tolower (method);
endif
[m, n] = size (x);
[mi, ni] = size (xi);
if (n != ni || rows (y) != m || columns (y) != 1)
error ("griddatan: dimensional mismatch");
endif
## triangulate data
tri = delaunayn (x, varargin{:});
yi = NaN (mi, 1);
if (strcmp (method, "nearest"))
## search index of nearest point
idx = dsearchn (x, tri, xi);
valid = !isnan (idx);
yi(valid) = y(idx(valid));
elseif (strcmp (method, "linear"))
## search for every point the enclosing triangle
[tri_list, bary_list] = tsearchn (x, tri, xi);
## only keep the points within triangles.
valid = !isnan (tri_list);
tri_list = tri_list(!isnan (tri_list));
bary_list = bary_list(!isnan (tri_list), :);
nr_t = rows (tri_list);
## assign x,y for each point of simplex
xt = reshape (x(tri(tri_list,:),:), [nr_t, n+1, n]);
yt = y(tri(tri_list,:));
## Use barycentric coordinate of point to calculate yi
yi(valid) = sum (y(tri(tri_list,:)) .* bary_list, 2);
else
error ("griddatan: unknown interpolation METHOD");
endif
endfunction
%!testif HAVE_QHULL
%! [xx,yy] = meshgrid (linspace (-1,1,32));
%! xi = [xx(:), yy(:)];
%! x = 2*rand (100,2) - 1;
%! x = [x;1,1;1,-1;-1,-1;-1,1];
%! y = sin (2 * sum (x.^2,2));
%! zz = griddatan (x,y,xi,"linear");
%! zz2 = griddata (x(:,1),x(:,2),y,xi(:,1),xi(:,2),"linear");
%! assert (zz, zz2, 1e-10);
%!testif HAVE_QHULL
%! [xx,yy] = meshgrid (linspace (-1,1,32));
%! xi = [xx(:), yy(:)];
%! x = 2*rand (100,2) - 1;
%! x = [x;1,1;1,-1;-1,-1;-1,1];
%! y = sin (2*sum (x.^2,2));
%! zz = griddatan (x,y,xi,"nearest");
%! zz2 = griddata (x(:,1),x(:,2),y,xi(:,1),xi(:,2),"nearest");
%! assert (zz, zz2, 1e-10);
|