File: inpolygon.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (147 lines) | stat: -rw-r--r-- 4,839 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
## Copyright (C) 2006-2013 Frederick (Rick) A Niles
##               and Søren Hauberg
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{in}, @var{on}] =} inpolygon (@var{x}, @var{y}, @var{xv}, @var{yv})
##
## For a polygon defined by vertex points @code{(@var{xv}, @var{yv})}, determine
## if the points @code{(@var{x}, @var{y})} are inside or outside the polygon.
## The variables @var{x}, @var{y}, must have the same dimension.  The optional
## output @var{on} gives the points that are on the polygon.
##
## @end deftypefn

## Author: Frederick (Rick) A Niles <niles@rickniles.com>
## Created: 14 November 2006

## Vectorized by Søren Hauberg <soren@hauberg.org>

## The method for determining if a point is in in a polygon is based on
## the algorithm shown on
## http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/ and is
## credited to Randolph Franklin.

function [in, on] = inpolygon (x, y, xv, yv)

  if (nargin != 4)
    print_usage ();
  endif

  if (! (isreal (x) && isreal (y) && ismatrix (y) && ismatrix (y)
         && size_equal (x, y)))
    error ("inpolygon: first two arguments must be real matrices of same size");
  elseif (! (isreal (xv) && isreal (yv) && isvector (xv) && isvector (yv)
             && size_equal (xv, yv)))
    error ("inpolygon: last two arguments must be real vectors of same size");
  endif

  npol = length (xv);
  do_boundary = (nargout >= 2);

  in = zeros (size (x), "logical");
  if (do_boundary)
    on = zeros (size (x), "logical");
  endif

  j = npol;
  for i = 1 : npol
    delta_xv = xv(j) - xv(i);
    delta_yv = yv(j) - yv(i);
    ## distance = [distance from (x,y) to edge] * length(edge)
    distance = delta_xv .* (y - yv(i)) - (x - xv(i)) .* delta_yv;
    ##
    ## is y between the y-values of edge i,j
    ##        AND (x,y) on the left of the edge ?
    idx1 = (((yv(i) <= y & y < yv(j)) | (yv(j) <= y & y < yv(i)))
            & 0 < distance.*delta_yv);
    in (idx1) = !in (idx1);

    ## Check if (x,y) are actually on the boundary of the polygon.
    if (do_boundary)
       idx2 = (((yv(i) <= y & y <= yv(j)) | (yv(j) <= y & y <= yv(i)))
               & ((xv(i) <= x & x <= xv(j)) | (xv(j) <= x & x <= xv(i)))
               & (0 == distance | !delta_xv));
       on (idx2) = true;
    endif
    j = i;
  endfor

endfunction


%!demo
%! xv = [ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, ...
%!        1.94545, 2.16477, 1.87639, 1.18218, 0.27615, ...
%!        0.05840 ];
%! yv = [ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, ...
%!        0.18161, 0.78850, 1.13589, 1.33781, 1.04650, ...
%!        0.60628 ];
%! xa = [0:0.1:2.3];
%! ya = [0:0.1:1.4];
%! [x,y] = meshgrid (xa, ya);
%! [in,on] = inpolygon (x, y, xv, yv);
%! inside = in & !on;
%!
%! clf;
%! plot (xv, yv);
%! hold on;
%! plot (x(inside), y(inside), "@g")
%! plot (x(!in), y(!in), "@m");
%! plot (x(on), y(on), "@b");
%! hold off;
%! disp ("Green points are inside polygon, magenta are outside,");
%! disp ("and blue are on boundary.");

%!demo
%!  xv = [ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, ...
%!         1.94545, 2.16477, 1.87639, 1.18218, 0.27615, ...
%!         0.05840, 0.73295, 1.28913, 1.74221, 1.16023, ...
%!         0.73295, 0.05840 ];
%!  yv = [ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, ...
%!         0.18161, 0.78850, 1.13589, 1.33781, 1.04650, ...
%!         0.60628, 0.82096, 0.67155, 0.96114, 1.14833, ...
%!         0.82096, 0.60628];
%! xa = [0:0.1:2.3];
%! ya = [0:0.1:1.4];
%! [x,y] = meshgrid (xa, ya);
%! [in,on] = inpolygon (x, y, xv, yv);
%! inside = in & !on;
%!
%! clf;
%! plot (xv, yv);
%! hold on;
%! plot (x(inside), y(inside), "@g");
%! plot (x(!in), y(!in), "@m");
%! plot (x(on), y(on), "@b");
%! hold off;
%! disp ("Green points are inside polygon, magenta are outside,");
%! disp ("and blue are on boundary.");

%!test
%! [in, on] = inpolygon ([1, 0], [1, 0], [-1, -1, 1, 1], [-1, 1, 1, -1]);
%! assert (in, [false, true]);
%! assert (on, [true, false]);

%% Test input validation
%!error inpolygon ()
%!error inpolygon (1, 2)
%!error inpolygon (1, 2, 3)
%!error inpolygon (1, [1,2], [3, 4], [5, 6])
%!error inpolygon ([1,2], [3, 4], [5, 6], 1)