1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
## Copyright (C) 2006-2013 Frederick (Rick) A Niles
## and Søren Hauberg
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{in}, @var{on}] =} inpolygon (@var{x}, @var{y}, @var{xv}, @var{yv})
##
## For a polygon defined by vertex points @code{(@var{xv}, @var{yv})}, determine
## if the points @code{(@var{x}, @var{y})} are inside or outside the polygon.
## The variables @var{x}, @var{y}, must have the same dimension. The optional
## output @var{on} gives the points that are on the polygon.
##
## @end deftypefn
## Author: Frederick (Rick) A Niles <niles@rickniles.com>
## Created: 14 November 2006
## Vectorized by Søren Hauberg <soren@hauberg.org>
## The method for determining if a point is in in a polygon is based on
## the algorithm shown on
## http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/ and is
## credited to Randolph Franklin.
function [in, on] = inpolygon (x, y, xv, yv)
if (nargin != 4)
print_usage ();
endif
if (! (isreal (x) && isreal (y) && ismatrix (y) && ismatrix (y)
&& size_equal (x, y)))
error ("inpolygon: first two arguments must be real matrices of same size");
elseif (! (isreal (xv) && isreal (yv) && isvector (xv) && isvector (yv)
&& size_equal (xv, yv)))
error ("inpolygon: last two arguments must be real vectors of same size");
endif
npol = length (xv);
do_boundary = (nargout >= 2);
in = zeros (size (x), "logical");
if (do_boundary)
on = zeros (size (x), "logical");
endif
j = npol;
for i = 1 : npol
delta_xv = xv(j) - xv(i);
delta_yv = yv(j) - yv(i);
## distance = [distance from (x,y) to edge] * length(edge)
distance = delta_xv .* (y - yv(i)) - (x - xv(i)) .* delta_yv;
##
## is y between the y-values of edge i,j
## AND (x,y) on the left of the edge ?
idx1 = (((yv(i) <= y & y < yv(j)) | (yv(j) <= y & y < yv(i)))
& 0 < distance.*delta_yv);
in (idx1) = !in (idx1);
## Check if (x,y) are actually on the boundary of the polygon.
if (do_boundary)
idx2 = (((yv(i) <= y & y <= yv(j)) | (yv(j) <= y & y <= yv(i)))
& ((xv(i) <= x & x <= xv(j)) | (xv(j) <= x & x <= xv(i)))
& (0 == distance | !delta_xv));
on (idx2) = true;
endif
j = i;
endfor
endfunction
%!demo
%! xv = [ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, ...
%! 1.94545, 2.16477, 1.87639, 1.18218, 0.27615, ...
%! 0.05840 ];
%! yv = [ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, ...
%! 0.18161, 0.78850, 1.13589, 1.33781, 1.04650, ...
%! 0.60628 ];
%! xa = [0:0.1:2.3];
%! ya = [0:0.1:1.4];
%! [x,y] = meshgrid (xa, ya);
%! [in,on] = inpolygon (x, y, xv, yv);
%! inside = in & !on;
%!
%! clf;
%! plot (xv, yv);
%! hold on;
%! plot (x(inside), y(inside), "@g")
%! plot (x(!in), y(!in), "@m");
%! plot (x(on), y(on), "@b");
%! hold off;
%! disp ("Green points are inside polygon, magenta are outside,");
%! disp ("and blue are on boundary.");
%!demo
%! xv = [ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, ...
%! 1.94545, 2.16477, 1.87639, 1.18218, 0.27615, ...
%! 0.05840, 0.73295, 1.28913, 1.74221, 1.16023, ...
%! 0.73295, 0.05840 ];
%! yv = [ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, ...
%! 0.18161, 0.78850, 1.13589, 1.33781, 1.04650, ...
%! 0.60628, 0.82096, 0.67155, 0.96114, 1.14833, ...
%! 0.82096, 0.60628];
%! xa = [0:0.1:2.3];
%! ya = [0:0.1:1.4];
%! [x,y] = meshgrid (xa, ya);
%! [in,on] = inpolygon (x, y, xv, yv);
%! inside = in & !on;
%!
%! clf;
%! plot (xv, yv);
%! hold on;
%! plot (x(inside), y(inside), "@g");
%! plot (x(!in), y(!in), "@m");
%! plot (x(on), y(on), "@b");
%! hold off;
%! disp ("Green points are inside polygon, magenta are outside,");
%! disp ("and blue are on boundary.");
%!test
%! [in, on] = inpolygon ([1, 0], [1, 0], [-1, -1, 1, 1], [-1, 1, 1, -1]);
%! assert (in, [false, true]);
%! assert (on, [true, false]);
%% Test input validation
%!error inpolygon ()
%!error inpolygon (1, 2)
%!error inpolygon (1, 2, 3)
%!error inpolygon (1, [1,2], [3, 4], [5, 6])
%!error inpolygon ([1,2], [3, 4], [5, 6], 1)
|