File: commutation_matrix.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (121 lines) | stat: -rw-r--r-- 2,873 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
## Copyright (C) 1995-2013 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} commutation_matrix (@var{m}, @var{n})
## Return the commutation matrix
## @tex
##  $K_{m,n}$
## @end tex
## @ifnottex
##  K(m,n)
## @end ifnottex
##  which is the unique
## @tex
##  $m n \times m n$
## @end tex
## @ifnottex
##  @var{m}*@var{n} by @var{m}*@var{n}
## @end ifnottex
##  matrix such that
## @tex
##  $K_{m,n} \cdot {\rm vec} (A) = {\rm vec} (A^T)$
## @end tex
## @ifnottex
##  @math{K(m,n) * vec(A) = vec(A')}
## @end ifnottex
##  for all
## @tex
##  $m\times n$
## @end tex
## @ifnottex
##  @math{m} by @math{n}
## @end ifnottex
##  matrices
## @tex
##  $A$.
## @end tex
## @ifnottex
##  @math{A}.
## @end ifnottex
##
## If only one argument @var{m} is given,
## @tex
##  $K_{m,m}$
## @end tex
## @ifnottex
##  @math{K(m,m)}
## @end ifnottex
##  is returned.
##
## See Magnus and Neudecker (1988), @cite{Matrix Differential Calculus with
## Applications in Statistics and Econometrics.}
## @end deftypefn

## Author: KH <Kurt.Hornik@wu-wien.ac.at>
## Created: 8 May 1995
## Adapted-By: jwe

function k = commutation_matrix (m, n)

  if (nargin < 1 || nargin > 2)
    print_usage ();
  else
    if (! (isscalar (m) && m == fix (m) && m > 0))
      error ("commutation_matrix: M must be a positive integer");
    endif
    if (nargin == 1)
      n = m;
    elseif (! (isscalar (n) && n == fix (n) && n > 0))
      error ("commutation_matrix: N must be a positive integer");
    endif
  endif

  ## It is clearly possible to make this a LOT faster!
  k = zeros (m * n, m * n);
  for i = 1 : m
    for j = 1 : n
      k ((i - 1) * n + j, (j - 1) * m + i) = 1;
    endfor
  endfor

endfunction


%!test
%! c = commutation_matrix (1,1);
%! assert (c,1);

%!test
%! A = rand (3,5);
%! vc = vec (A);
%! vr = vec (A');
%! c = commutation_matrix (3,5);
%! assert (c*vc, vr);

%!test
%! A = rand (4,6);
%! vc = vec (A);
%! vr = vec (A');
%! c = commutation_matrix (4,6);
%! assert (c*vc, vr);

%!error <M must be a positive integer> commutation_matrix (0,0)
%!error <N must be a positive integer> commutation_matrix (1,0)
%!error <M must be a positive integer> commutation_matrix (0,1)