File: duplication_matrix.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (122 lines) | stat: -rw-r--r-- 2,856 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
## Copyright (C) 1995-2013 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} duplication_matrix (@var{n})
## Return the duplication matrix
## @tex
##  $D_n$
## @end tex
## @ifnottex
##  @nospell{@math{Dn}}
## @end ifnottex
##  which is the unique
## @tex
##  $n^2 \times n(n+1)/2$
## @end tex
## @ifnottex
##  @math{n^2} by @math{n*(n+1)/2}
## @end ifnottex
##  matrix such that
## @tex
##  $D_n * {\rm vech} (A) = {\rm vec} (A)$
## @end tex
## @ifnottex
##  @nospell{@math{Dn vech (A) = vec (A)}}
## @end ifnottex
##  for all symmetric
## @tex
##  $n \times n$
## @end tex
## @ifnottex
##  @math{n} by @math{n}
## @end ifnottex
##  matrices
## @tex
##  $A$.
## @end tex
## @ifnottex
##  @math{A}.
## @end ifnottex
##
## See Magnus and Neudecker (1988), Matrix differential calculus with
## applications in statistics and econometrics.
## @end deftypefn

## Author: KH <Kurt.Hornik@wu-wien.ac.at>
## Created: 8 May 1995
## Adapged-By: jwe

function d = duplication_matrix (n)

  if (nargin != 1)
    print_usage ();
  endif

  if (! (isscalar (n) && n > 0 && n == fix (n)))
    error ("duplication_matrix: N must be a positive integer");
  endif

  d = zeros (n * n, n * (n + 1) / 2);

  ## It is clearly possible to make this a LOT faster!
  count = 0;
  for j = 1 : n
    d ((j - 1) * n + j, count + j) = 1;
    for i = (j + 1) : n
      d ((j - 1) * n + i, count + i) = 1;
      d ((i - 1) * n + j, count + i) = 1;
    endfor
    count = count + n - j;
  endfor

endfunction


%!test
%! N = 2;
%! A = rand (N);
%! B = A * A';
%! C = A + A';
%! D = duplication_matrix (N);
%! assert (D * vech (B), vec (B), 1e-6);
%! assert (D * vech (C), vec (C), 1e-6);

%!test
%! N = 3;
%! A = rand (N);
%! B = A * A';
%! C = A + A';
%! D = duplication_matrix (N);
%! assert (D * vech (B), vec (B), 1e-6);
%! assert (D * vech (C), vec (C), 1e-6);

%!test
%! N = 4;
%! A = rand (N);
%! B = A * A';
%! C = A + A';
%! D = duplication_matrix (N);
%! assert (D * vech (B), vec (B), 1e-6);
%! assert (D * vech (C), vec (C), 1e-6);

%!error duplication_matrix ()
%!error duplication_matrix (0.5)
%!error duplication_matrix (-1)
%!error duplication_matrix (ones (1,4))