File: linsolve.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (137 lines) | stat: -rw-r--r-- 4,118 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
## Copyright (C) 2013 Nir Krakauer
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{x} =} linsolve (@var{A}, @var{b})
## @deftypefnx {Function File} {@var{x} =} linsolve (@var{A}, @var{b}, @var{opts})
## @deftypefnx {Function File} {[@var{x}, @var{R}] =} linsolve (@dots{})
## Solve the linear system @code{A*x = b}.
##
## With no options, this function is equivalent to the left division operator
## @w{(@code{x = A \ b})} or the matrix-left-divide function
## @w{(@code{x = mldivide (A, b)})}.
##
## Octave ordinarily examines the properties of the matrix @var{A} and chooses
## a solver that best matches the matrix.  By passing a structure @var{opts}
## to @code{linsolve} you can inform Octave directly about the matrix @var{A}.
## In this case Octave will skip the matrix examination and proceed directly
## to solving the linear system.
##
## @strong{Warning:} If the matrix @var{A} does not have the properties
## listed in the @var{opts} structure then the result will not be accurate
## AND no warning will be given.  When in doubt, let Octave examine the matrix
## and choose the appropriate solver as this step takes little time and the
## result is cached so that it is only done once per linear system.
##
## Possible @var{opts} fields (set value to true/false):
##
## @table @asis
## @item LT
##   @var{A} is lower triangular
##
## @item UT
##   @var{A} is upper triangular
##
## @item UHESS
##   @var{A} is upper Hessenberg (currently makes no difference)
##
## @item SYM
##   @var{A} is symmetric or complex Hermitian (currently makes no difference)
##
## @item POSDEF
##   @var{A} is positive definite
##
## @item RECT
##   @var{A} is general rectangular (currently makes no difference)
##
## @item TRANSA
##   Solve @code{A'*x = b} by @code{transpose (A) \ b}
## @end table
##
## The optional second output @var{R} is the inverse condition number of
## @var{A} (zero if matrix is singular).
## @seealso{mldivide, matrix_type, rcond}
## @end deftypefn

## Author: Nir Krakauer <nkrakauer@ccny.cuny.edu>

function [x, R] = linsolve (A, b, opts)

  if (nargin < 2 || nargin > 3)
    print_usage ();
  endif

  if (! (isnumeric (A) && isnumeric (b)))
    error ("linsolve: A and B must be numeric");
  endif

  ## Process any opts
  if (nargin > 2)
    if (! isstruct (opts))
      error ("linsolve: OPTS must be a structure");
    endif
    trans_A = false;
    if (isfield (opts, "TRANSA") && opts.TRANSA)
      trans_A = true;
      A = A';
    endif
    if (isfield (opts, "POSDEF") && opts.POSDEF)
      A = matrix_type (A, "positive definite");
    endif  
    if (isfield (opts, "LT") && opts.LT)
      if (trans_A)
        A = matrix_type (A, "upper");
      else
        A = matrix_type (A, "lower");
      endif
    endif
    if (isfield (opts, "UT") && opts.UT)
      if (trans_A)
        A = matrix_type (A, "lower");
      else
        A = matrix_type (A, "upper");
      endif
    endif        
  endif

  x = A \ b;

  if (nargout > 1)
    if (issquare (A))
      R = rcond (A);
    else
      R = 0;
    endif
  endif
endfunction


%!test
%! n = 4;
%! A = triu (rand (n));
%! x = rand (n, 1);
%! b = A' * x;
%! opts.UT = true;
%! opts.TRANSA = true;
%! assert (linsolve (A, b, opts), A' \ b);

%!error linsolve ()
%!error linsolve (1)
%!error linsolve (1,2,3)
%!error <A and B must be numeric> linsolve ({1},2)
%!error <A and B must be numeric> linsolve (1,{2})
%!error <OPTS must be a structure> linsolve (1,2,3)