1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
## Copyright (C) 2013 Nir Krakauer
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{x} =} linsolve (@var{A}, @var{b})
## @deftypefnx {Function File} {@var{x} =} linsolve (@var{A}, @var{b}, @var{opts})
## @deftypefnx {Function File} {[@var{x}, @var{R}] =} linsolve (@dots{})
## Solve the linear system @code{A*x = b}.
##
## With no options, this function is equivalent to the left division operator
## @w{(@code{x = A \ b})} or the matrix-left-divide function
## @w{(@code{x = mldivide (A, b)})}.
##
## Octave ordinarily examines the properties of the matrix @var{A} and chooses
## a solver that best matches the matrix. By passing a structure @var{opts}
## to @code{linsolve} you can inform Octave directly about the matrix @var{A}.
## In this case Octave will skip the matrix examination and proceed directly
## to solving the linear system.
##
## @strong{Warning:} If the matrix @var{A} does not have the properties
## listed in the @var{opts} structure then the result will not be accurate
## AND no warning will be given. When in doubt, let Octave examine the matrix
## and choose the appropriate solver as this step takes little time and the
## result is cached so that it is only done once per linear system.
##
## Possible @var{opts} fields (set value to true/false):
##
## @table @asis
## @item LT
## @var{A} is lower triangular
##
## @item UT
## @var{A} is upper triangular
##
## @item UHESS
## @var{A} is upper Hessenberg (currently makes no difference)
##
## @item SYM
## @var{A} is symmetric or complex Hermitian (currently makes no difference)
##
## @item POSDEF
## @var{A} is positive definite
##
## @item RECT
## @var{A} is general rectangular (currently makes no difference)
##
## @item TRANSA
## Solve @code{A'*x = b} by @code{transpose (A) \ b}
## @end table
##
## The optional second output @var{R} is the inverse condition number of
## @var{A} (zero if matrix is singular).
## @seealso{mldivide, matrix_type, rcond}
## @end deftypefn
## Author: Nir Krakauer <nkrakauer@ccny.cuny.edu>
function [x, R] = linsolve (A, b, opts)
if (nargin < 2 || nargin > 3)
print_usage ();
endif
if (! (isnumeric (A) && isnumeric (b)))
error ("linsolve: A and B must be numeric");
endif
## Process any opts
if (nargin > 2)
if (! isstruct (opts))
error ("linsolve: OPTS must be a structure");
endif
trans_A = false;
if (isfield (opts, "TRANSA") && opts.TRANSA)
trans_A = true;
A = A';
endif
if (isfield (opts, "POSDEF") && opts.POSDEF)
A = matrix_type (A, "positive definite");
endif
if (isfield (opts, "LT") && opts.LT)
if (trans_A)
A = matrix_type (A, "upper");
else
A = matrix_type (A, "lower");
endif
endif
if (isfield (opts, "UT") && opts.UT)
if (trans_A)
A = matrix_type (A, "lower");
else
A = matrix_type (A, "upper");
endif
endif
endif
x = A \ b;
if (nargout > 1)
if (issquare (A))
R = rcond (A);
else
R = 0;
endif
endif
endfunction
%!test
%! n = 4;
%! A = triu (rand (n));
%! x = rand (n, 1);
%! b = A' * x;
%! opts.UT = true;
%! opts.TRANSA = true;
%! assert (linsolve (A, b, opts), A' \ b);
%!error linsolve ()
%!error linsolve (1)
%!error linsolve (1,2,3)
%!error <A and B must be numeric> linsolve ({1},2)
%!error <A and B must be numeric> linsolve (1,{2})
%!error <OPTS must be a structure> linsolve (1,2,3)
|