File: logm.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (175 lines) | stat: -rw-r--r-- 5,191 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
## Copyright (C) 2008-2013 N. J. Higham
## Copyright (C) 2010 Richard T. Guy
## Copyright (C) 2010 Marco Caliari
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{s} =} logm (@var{A})
## @deftypefnx {Function File} {@var{s} =} logm (@var{A}, @var{opt_iters})
## @deftypefnx {Function File} {[@var{s}, @var{iters}] =} logm (@dots{})
## Compute the matrix logarithm of the square matrix @var{A}.  The
## implementation utilizes a Pad@'e approximant and the identity
##
## @example
## logm (@var{A}) = 2^k * logm (@var{A}^(1 / 2^k))
## @end example
##
## The optional argument @var{opt_iters} is the maximum number of square roots
## to compute and defaults to 100.  The optional output @var{iters} is the
## number of square roots actually computed.
## @seealso{expm, sqrtm}
## @end deftypefn

## Reference: N. J. Higham, Functions of Matrices: Theory and Computation
##            (SIAM, 2008.)
##

## Author: N. J. Higham
## Author: Richard T. Guy <guyrt7@wfu.edu>
## Author: Marco Caliari <marco.caliari@univr.it>

function [s, iters] = logm (A, opt_iters = 100)

  if (nargin == 0 || nargin > 2)
    print_usage ();
  endif

  if (! issquare (A))
    error ("logm: A must be a square matrix");
  endif

  if (isscalar (A))
    s = log (A);
    return;
  elseif (strfind (typeinfo (A), "diagonal matrix"))
    s = diag (log (diag (A)));
    return;
  endif

  [u, s] = schur (A);

  if (isreal (A))
    [u, s] = rsf2csf (u, s);
  endif

  eigv = diag (s);
  if (any (eigv < 0))
    warning ("Octave:logm:non-principal",
             "logm: principal matrix logarithm is not defined for matrices with negative eigenvalues; computing non-principal logarithm");
  endif

  real_eig = all (eigv >= 0);

  k = 0;
  ## Algorithm 11.9 in "Function of matrices", by N. Higham
  theta = [0, 0, 1.61e-2, 5.38e-2, 1.13e-1, 1.86e-1, 2.6429608311114350e-1];
  p = 0;
  m = 7;
  while (k < opt_iters)
    tau = norm (s - eye (size (s)),1);
    if (tau <= theta (7))
      p = p + 1;
      j(1) = find (tau <= theta, 1);
      j(2) = find (tau / 2 <= theta, 1);
      if (j(1) - j(2) <= 1 || p == 2)
        m = j(1);
        break
      endif
    endif
    k = k + 1;
    s = sqrtm (s);
  endwhile

  if (k >= opt_iters)
    warning ("logm: maximum number of square roots exceeded; results may still be accurate");
  endif

  s = s - eye (size (s));

  if (m > 1)
    s = logm_pade_pf (s, m);
  endif

  s = 2^k * u * s * u';

  ## Remove small complex values (O(eps)) which may have entered calculation
  if (real_eig && isreal (A))
    s = real (s);
  endif

  if (nargout == 2)
    iters = k;
  endif

endfunction

################## ANCILLARY FUNCTIONS ################################
######  Taken from the mfttoolbox (GPL 3) by D. Higham.
######  Reference:
######      D. Higham, Functions of Matrices: Theory and Computation
######      (SIAM, 2008.).
#######################################################################

##LOGM_PADE_PF   Evaluate Pade approximant to matrix log by partial fractions.
##   Y = LOGM_PADE_PF(A,M) evaluates the [M/M] Pade approximation to
##   LOG(EYE(SIZE(A))+A) using a partial fraction expansion.

function s = logm_pade_pf (A, m)
  [nodes, wts] = gauss_legendre (m);
  ## Convert from [-1,1] to [0,1].
  nodes = (nodes+1)/2;
  wts = wts/2;

  n = length (A);
  s = zeros (n);
  for j = 1:m
    s += wts(j)*(A/(eye (n) + nodes(j)*A));
  endfor
endfunction

######################################################################
## GAUSS_LEGENDRE  Nodes and weights for Gauss-Legendre quadrature.
##   [X,W] = GAUSS_LEGENDRE(N) computes the nodes X and weights W
##   for N-point Gauss-Legendre quadrature.

## Reference:
## G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature
## rules, Math. Comp., 23(106):221-230, 1969.

function [x, w] = gauss_legendre (n)
  i = 1:n-1;
  v = i./sqrt ((2*i).^2-1);
  [V, D] = eig (diag (v, -1) + diag (v, 1));
  x = diag (D);
  w = 2*(V(1,:)'.^2);
endfunction


%!assert (norm (logm ([1 -1;0 1]) - [0 -1; 0 0]) < 1e-5)
%!assert (norm (expm (logm ([-1 2 ; 4 -1])) - [-1 2 ; 4 -1]) < 1e-5)
%!assert (logm ([1 -1 -1;0 1 -1; 0 0 1]), [0 -1 -1.5; 0 0 -1; 0 0 0], 1e-5)
%!assert (logm (10), log (10))
%!assert (full (logm (eye (3))), logm (full (eye (3))))
%!assert (full (logm (10*eye (3))), logm (full (10*eye (3))), 8*eps)
%!assert (logm (expm ([0 1i; -1i 0])), [0 1i; -1i 0], 10 * eps)

%% Test input validation
%!error logm ()
%!error logm (1, 2, 3)
%!error <logm: A must be a square matrix> logm ([1 0;0 1; 2 2])