1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
## Copyright (C) 2008-2013 N. J. Higham
## Copyright (C) 2010 Richard T. Guy
## Copyright (C) 2010 Marco Caliari
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{s} =} logm (@var{A})
## @deftypefnx {Function File} {@var{s} =} logm (@var{A}, @var{opt_iters})
## @deftypefnx {Function File} {[@var{s}, @var{iters}] =} logm (@dots{})
## Compute the matrix logarithm of the square matrix @var{A}. The
## implementation utilizes a Pad@'e approximant and the identity
##
## @example
## logm (@var{A}) = 2^k * logm (@var{A}^(1 / 2^k))
## @end example
##
## The optional argument @var{opt_iters} is the maximum number of square roots
## to compute and defaults to 100. The optional output @var{iters} is the
## number of square roots actually computed.
## @seealso{expm, sqrtm}
## @end deftypefn
## Reference: N. J. Higham, Functions of Matrices: Theory and Computation
## (SIAM, 2008.)
##
## Author: N. J. Higham
## Author: Richard T. Guy <guyrt7@wfu.edu>
## Author: Marco Caliari <marco.caliari@univr.it>
function [s, iters] = logm (A, opt_iters = 100)
if (nargin == 0 || nargin > 2)
print_usage ();
endif
if (! issquare (A))
error ("logm: A must be a square matrix");
endif
if (isscalar (A))
s = log (A);
return;
elseif (strfind (typeinfo (A), "diagonal matrix"))
s = diag (log (diag (A)));
return;
endif
[u, s] = schur (A);
if (isreal (A))
[u, s] = rsf2csf (u, s);
endif
eigv = diag (s);
if (any (eigv < 0))
warning ("Octave:logm:non-principal",
"logm: principal matrix logarithm is not defined for matrices with negative eigenvalues; computing non-principal logarithm");
endif
real_eig = all (eigv >= 0);
k = 0;
## Algorithm 11.9 in "Function of matrices", by N. Higham
theta = [0, 0, 1.61e-2, 5.38e-2, 1.13e-1, 1.86e-1, 2.6429608311114350e-1];
p = 0;
m = 7;
while (k < opt_iters)
tau = norm (s - eye (size (s)),1);
if (tau <= theta (7))
p = p + 1;
j(1) = find (tau <= theta, 1);
j(2) = find (tau / 2 <= theta, 1);
if (j(1) - j(2) <= 1 || p == 2)
m = j(1);
break
endif
endif
k = k + 1;
s = sqrtm (s);
endwhile
if (k >= opt_iters)
warning ("logm: maximum number of square roots exceeded; results may still be accurate");
endif
s = s - eye (size (s));
if (m > 1)
s = logm_pade_pf (s, m);
endif
s = 2^k * u * s * u';
## Remove small complex values (O(eps)) which may have entered calculation
if (real_eig && isreal (A))
s = real (s);
endif
if (nargout == 2)
iters = k;
endif
endfunction
################## ANCILLARY FUNCTIONS ################################
###### Taken from the mfttoolbox (GPL 3) by D. Higham.
###### Reference:
###### D. Higham, Functions of Matrices: Theory and Computation
###### (SIAM, 2008.).
#######################################################################
##LOGM_PADE_PF Evaluate Pade approximant to matrix log by partial fractions.
## Y = LOGM_PADE_PF(A,M) evaluates the [M/M] Pade approximation to
## LOG(EYE(SIZE(A))+A) using a partial fraction expansion.
function s = logm_pade_pf (A, m)
[nodes, wts] = gauss_legendre (m);
## Convert from [-1,1] to [0,1].
nodes = (nodes+1)/2;
wts = wts/2;
n = length (A);
s = zeros (n);
for j = 1:m
s += wts(j)*(A/(eye (n) + nodes(j)*A));
endfor
endfunction
######################################################################
## GAUSS_LEGENDRE Nodes and weights for Gauss-Legendre quadrature.
## [X,W] = GAUSS_LEGENDRE(N) computes the nodes X and weights W
## for N-point Gauss-Legendre quadrature.
## Reference:
## G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature
## rules, Math. Comp., 23(106):221-230, 1969.
function [x, w] = gauss_legendre (n)
i = 1:n-1;
v = i./sqrt ((2*i).^2-1);
[V, D] = eig (diag (v, -1) + diag (v, 1));
x = diag (D);
w = 2*(V(1,:)'.^2);
endfunction
%!assert (norm (logm ([1 -1;0 1]) - [0 -1; 0 0]) < 1e-5)
%!assert (norm (expm (logm ([-1 2 ; 4 -1])) - [-1 2 ; 4 -1]) < 1e-5)
%!assert (logm ([1 -1 -1;0 1 -1; 0 0 1]), [0 -1 -1.5; 0 0 -1; 0 0 0], 1e-5)
%!assert (logm (10), log (10))
%!assert (full (logm (eye (3))), logm (full (eye (3))))
%!assert (full (logm (10*eye (3))), logm (full (10*eye (3))), 8*eps)
%!assert (logm (expm ([0 1i; -1i 0])), [0 1i; -1i 0], 10 * eps)
%% Test input validation
%!error logm ()
%!error logm (1, 2, 3)
%!error <logm: A must be a square matrix> logm ([1 0;0 1; 2 2])
|