1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
## Copyright (C) 2007-2013 Regents of the University of California
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{est}, @var{v}, @var{w}, @var{iter}] =} onenormest (@var{A}, @var{t})
## @deftypefnx {Function File} {[@var{est}, @var{v}, @var{w}, @var{iter}] =} onenormest (@var{apply}, @var{apply_t}, @var{n}, @var{t})
##
## Apply Higham and Tisseur's randomized block 1-norm estimator to
## matrix @var{A} using @var{t} test vectors. If @var{t} exceeds 5, then
## only 5 test vectors are used.
##
## If the matrix is not explicit, e.g., when estimating the norm of
## @code{inv (@var{A})} given an LU@tie{}factorization, @code{onenormest}
## applies @var{A} and its conjugate transpose through a pair of functions
## @var{apply} and @var{apply_t}, respectively, to a dense matrix of size
## @var{n} by @var{t}. The implicit version requires an explicit dimension
## @var{n}.
##
## Returns the norm estimate @var{est}, two vectors @var{v} and
## @var{w} related by norm
## @code{(@var{w}, 1) = @var{est} * norm (@var{v}, 1)},
## and the number of iterations @var{iter}. The number of
## iterations is limited to 10 and is at least 2.
##
## References:
##
## @itemize
## @item
## N.J. Higham and F. Tisseur, @cite{A Block Algorithm
## for Matrix 1-Norm Estimation, with an Application to 1-Norm
## Pseudospectra}. SIMAX vol 21, no 4, pp 1185-1201.
## @url{http://dx.doi.org/10.1137/S0895479899356080}
##
## @item
## N.J. Higham and F. Tisseur, @cite{A Block Algorithm
## for Matrix 1-Norm Estimation, with an Application to 1-Norm
## Pseudospectra}. @url{http://citeseer.ist.psu.edu/223007.html}
## @end itemize
##
## @seealso{condest, norm, cond}
## @end deftypefn
## Code originally licensed under
##
## Copyright (c) 2007, Regents of the University of California
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions
## are met:
##
## * Redistributions of source code must retain the above copyright
## notice, this list of conditions and the following disclaimer.
##
## * Redistributions in binary form must reproduce the above
## copyright notice, this list of conditions and the following
## disclaimer in the documentation and/or other materials provided
## with the distribution.
##
## * Neither the name of the University of California, Berkeley nor
## the names of its contributors may be used to endorse or promote
## products derived from this software without specific prior
## written permission.
##
## THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
## TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
## PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND
## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
## USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
## ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
## OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
## SUCH DAMAGE.
## Author: Jason Riedy <ejr@cs.berkeley.edu>
## Keywords: linear-algebra norm estimation
## Version: 0.2
function [est, v, w, iter] = onenormest (varargin)
if (nargin < 1 || nargin > 4)
print_usage ();
endif
default_t = 5;
itmax = 10;
if (ismatrix (varargin{1}))
[n, nc] = size (varargin{1});
if (n != nc)
error ("onenormest: matrix must be square");
endif
apply = @(x) varargin{1} * x;
apply_t = @(x) varargin{1}' * x;
if (nargin > 1)
t = varargin{2};
else
t = min (n, default_t);
endif
issing = isa (varargin{1}, "single");
else
if (nargin < 3)
print_usage ();
endif
apply = varargin{1};
apply_t = varargin{2};
n = varargin{3};
if (nargin > 3)
t = varargin{4};
else
t = default_t;
endif
issing = isa (n, "single");
endif
## Initial test vectors X.
X = rand (n, t);
X = X ./ (ones (n,1) * sum (abs (X), 1));
## Track if a vertex has been visited.
been_there = zeros (n, 1);
## To check if the estimate has increased.
est_old = 0;
## Normalized vector of signs.
S = zeros (n, t);
if (issing)
myeps = eps ("single");
X = single (X);
else
myeps = eps;
endif
for iter = 1 : itmax + 1
Y = feval (apply, X);
## Find the initial estimate as the largest A*x.
[est, ind_best] = max (sum (abs (Y), 1));
if (est > est_old || iter == 2)
w = Y(:,ind_best);
endif
if (iter >= 2 && est < est_old)
## No improvement, so stop.
est = est_old;
break;
endif
est_old = est;
S_old = S;
if (iter > itmax),
## Gone too far. Stop.
break;
endif
S = sign (Y);
## Test if any of S are approximately parallel to previous S
## vectors or current S vectors. If everything is parallel,
## stop. Otherwise, replace any parallel vectors with
## rand{-1,+1}.
partest = any (abs (S_old' * S - n) < 4*eps*n);
if (all (partest))
## All the current vectors are parallel to old vectors.
## We've hit a cycle, so stop.
break;
endif
if (any (partest))
## Some vectors are parallel to old ones and are cycling,
## but not all of them. Replace the parallel vectors with
## rand{-1,+1}.
numpar = sum (partest);
replacements = 2*(rand (n,numpar) < 0.5) - 1;
S(:,partest) = replacements;
endif
## Now test for parallel vectors within S.
partest = any ((S' * S - eye (t)) == n);
if (any (partest))
numpar = sum (partest);
replacements = 2*(rand (n,numpar) < 0.5) - 1;
S(:,partest) = replacements;
endif
Z = feval (apply_t, S);
## Now find the largest non-previously-visted index per vector.
h = max (abs (Z),2);
[mh, mhi] = max (h);
if (iter >= 2 && mhi == ind_best)
## Hit a cycle, stop.
break;
endif
[h, ind] = sort (h, 'descend');
if (t > 1)
firstind = ind(1:t);
if (all (been_there(firstind)))
## Visited all these before, so stop.
break;
endif
ind = ind(! been_there(ind));
if (length (ind) < t)
## There aren't enough new vectors, so we're practically
## in a cycle. Stop.
break;
endif
endif
## Visit the new indices.
X = zeros (n, t);
for zz = 1 : t
X(ind(zz),zz) = 1;
endfor
been_there(ind(1 : t)) = 1;
endfor
## The estimate est and vector w are set in the loop above.
## The vector v selects the ind_best column of A.
v = zeros (n, 1);
v(ind_best) = 1;
endfunction
%!demo
%! N = 100;
%! A = randn (N) + eye (N);
%! [L,U,P] = lu (A);
%! nm1inv = onenormest (@(x) U\(L\(P*x)), @(x) P'*(L'\(U'\x)), N, 30)
%! norm (inv (A), 1)
%!test
%! N = 10;
%! A = ones (N);
%! [nm1, v1, w1] = onenormest (A);
%! [nminf, vinf, winf] = onenormest (A', 6);
%! assert (nm1, N, -2*eps);
%! assert (nminf, N, -2*eps);
%! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps);
%! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps);
%!test
%! N = 10;
%! A = ones (N);
%! [nm1, v1, w1] = onenormest (@(x) A*x, @(x) A'*x, N, 3);
%! [nminf, vinf, winf] = onenormest (@(x) A'*x, @(x) A*x, N, 3);
%! assert (nm1, N, -2*eps);
%! assert (nminf, N, -2*eps);
%! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps);
%! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps);
%!test
%! N = 5;
%! A = hilb (N);
%! [nm1, v1, w1] = onenormest (A);
%! [nminf, vinf, winf] = onenormest (A', 6);
%! assert (nm1, norm (A, 1), -2*eps);
%! assert (nminf, norm (A, inf), -2*eps);
%! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps);
%! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps);
## Only likely to be within a factor of 10.
%!test
%! old_state = rand ("state");
%! restore_state = onCleanup (@() rand ("state", old_state));
%! rand ('state', 42); % Initialize to guarantee reproducible results
%! N = 100;
%! A = rand (N);
%! [nm1, v1, w1] = onenormest (A);
%! [nminf, vinf, winf] = onenormest (A', 6);
%! assert (nm1, norm (A, 1), -.1);
%! assert (nminf, norm (A, inf), -.1);
%! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps);
%! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps);
|