File: onenormest.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (293 lines) | stat: -rw-r--r-- 9,267 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
## Copyright (C) 2007-2013 Regents of the University of California
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{est}, @var{v}, @var{w}, @var{iter}] =} onenormest (@var{A}, @var{t})
## @deftypefnx {Function File} {[@var{est}, @var{v}, @var{w}, @var{iter}] =} onenormest (@var{apply}, @var{apply_t}, @var{n}, @var{t})
##
## Apply Higham and Tisseur's randomized block 1-norm estimator to
## matrix @var{A} using @var{t} test vectors.  If @var{t} exceeds 5, then
## only 5 test vectors are used.
##
## If the matrix is not explicit, e.g., when estimating the norm of
## @code{inv (@var{A})} given an LU@tie{}factorization, @code{onenormest}
## applies @var{A} and its conjugate transpose through a pair of functions
## @var{apply} and @var{apply_t}, respectively, to a dense matrix of size
## @var{n} by @var{t}.  The implicit version requires an explicit dimension
## @var{n}.
##
## Returns the norm estimate @var{est}, two vectors @var{v} and
## @var{w} related by norm
## @code{(@var{w}, 1) = @var{est} * norm (@var{v}, 1)},
## and the number of iterations @var{iter}.  The number of
## iterations is limited to 10 and is at least 2.
##
## References:
##
## @itemize
## @item
## N.J. Higham and F. Tisseur, @cite{A Block Algorithm
## for Matrix 1-Norm Estimation, with an Application to 1-Norm
## Pseudospectra}. SIMAX vol 21, no 4, pp 1185-1201.
## @url{http://dx.doi.org/10.1137/S0895479899356080}
##
## @item
## N.J. Higham and F. Tisseur, @cite{A Block Algorithm
## for Matrix 1-Norm Estimation, with an Application to 1-Norm
## Pseudospectra}. @url{http://citeseer.ist.psu.edu/223007.html}
## @end itemize
##
## @seealso{condest, norm, cond}
## @end deftypefn

## Code originally licensed under
##
##  Copyright (c) 2007, Regents of the University of California
##  All rights reserved.
##
##  Redistribution and use in source and binary forms, with or without
##  modification, are permitted provided that the following conditions
##  are met:
##
##     * Redistributions of source code must retain the above copyright
##       notice, this list of conditions and the following disclaimer.
##
##     * Redistributions in binary form must reproduce the above
##       copyright notice, this list of conditions and the following
##       disclaimer in the documentation and/or other materials provided
##       with the distribution.
##
##     * Neither the name of the University of California, Berkeley nor
##       the names of its contributors may be used to endorse or promote
##       products derived from this software without specific prior
##       written permission.
##
##  THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS''
##  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
##  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
##  PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND
##  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
##  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
##  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
##  USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
##  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
##  OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
##  OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
##  SUCH DAMAGE.

## Author: Jason Riedy <ejr@cs.berkeley.edu>
## Keywords: linear-algebra norm estimation
## Version: 0.2

function [est, v, w, iter] = onenormest (varargin)

  if (nargin < 1 || nargin > 4)
    print_usage ();
  endif

  default_t = 5;
  itmax = 10;

  if (ismatrix (varargin{1}))
    [n, nc] = size (varargin{1});
    if (n != nc)
      error ("onenormest: matrix must be square");
    endif
    apply = @(x) varargin{1} * x;
    apply_t = @(x) varargin{1}' * x;
    if (nargin > 1)
      t = varargin{2};
    else
      t = min (n, default_t);
    endif
    issing = isa (varargin{1}, "single");
  else
    if (nargin < 3)
      print_usage ();
    endif
    apply = varargin{1};
    apply_t = varargin{2};
    n = varargin{3};
    if (nargin > 3)
      t = varargin{4};
    else
      t = default_t;
    endif
    issing = isa (n, "single");
  endif

  ## Initial test vectors X.
  X = rand (n, t);
  X = X ./ (ones (n,1) * sum (abs (X), 1));

  ## Track if a vertex has been visited.
  been_there = zeros (n, 1);

  ## To check if the estimate has increased.
  est_old = 0;

  ## Normalized vector of signs.
  S = zeros (n, t);

  if (issing)
    myeps = eps ("single");
    X = single (X);
  else
    myeps = eps;
  endif

  for iter = 1 : itmax + 1
    Y = feval (apply, X);

    ## Find the initial estimate as the largest A*x.
    [est, ind_best] = max (sum (abs (Y), 1));
    if (est > est_old || iter == 2)
      w = Y(:,ind_best);
    endif
    if (iter >= 2 && est < est_old)
      ## No improvement, so stop.
      est = est_old;
      break;
    endif

    est_old = est;
    S_old = S;
    if (iter > itmax),
      ## Gone too far.  Stop.
      break;
    endif

    S = sign (Y);

    ## Test if any of S are approximately parallel to previous S
    ## vectors or current S vectors.  If everything is parallel,
    ## stop.  Otherwise, replace any parallel vectors with
    ## rand{-1,+1}.
    partest = any (abs (S_old' * S - n) < 4*eps*n);
    if (all (partest))
      ## All the current vectors are parallel to old vectors.
      ## We've hit a cycle, so stop.
      break;
    endif
    if (any (partest))
      ## Some vectors are parallel to old ones and are cycling,
      ## but not all of them.  Replace the parallel vectors with
      ## rand{-1,+1}.
      numpar = sum (partest);
      replacements = 2*(rand (n,numpar) < 0.5) - 1;
      S(:,partest) = replacements;
    endif
    ## Now test for parallel vectors within S.
    partest = any ((S' * S - eye (t)) == n);
    if (any (partest))
      numpar = sum (partest);
      replacements = 2*(rand (n,numpar) < 0.5) - 1;
      S(:,partest) = replacements;
    endif

    Z = feval (apply_t, S);

    ## Now find the largest non-previously-visted index per vector.
    h = max (abs (Z),2);
    [mh, mhi] = max (h);
    if (iter >= 2 && mhi == ind_best)
      ## Hit a cycle, stop.
      break;
    endif
    [h, ind] = sort (h, 'descend');
    if (t > 1)
      firstind = ind(1:t);
      if (all (been_there(firstind)))
        ## Visited all these before, so stop.
        break;
      endif
      ind = ind(! been_there(ind));
      if (length (ind) < t)
        ## There aren't enough new vectors, so we're practically
        ## in a cycle.  Stop.
        break;
      endif
    endif

    ## Visit the new indices.
    X = zeros (n, t);
    for zz = 1 : t
      X(ind(zz),zz) = 1;
    endfor
    been_there(ind(1 : t)) = 1;
  endfor

  ## The estimate est and vector w are set in the loop above.
  ## The vector v selects the ind_best column of A.
  v = zeros (n, 1);
  v(ind_best) = 1;

endfunction


%!demo
%! N = 100;
%! A = randn (N) + eye (N);
%! [L,U,P] = lu (A);
%! nm1inv = onenormest (@(x) U\(L\(P*x)), @(x) P'*(L'\(U'\x)), N, 30)
%! norm (inv (A), 1)

%!test
%! N = 10;
%! A = ones (N);
%! [nm1, v1, w1] = onenormest (A);
%! [nminf, vinf, winf] = onenormest (A', 6);
%! assert (nm1, N, -2*eps);
%! assert (nminf, N, -2*eps);
%! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps);
%! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps);

%!test
%! N = 10;
%! A = ones (N);
%! [nm1, v1, w1] = onenormest (@(x) A*x, @(x) A'*x, N, 3);
%! [nminf, vinf, winf] = onenormest (@(x) A'*x, @(x) A*x, N, 3);
%! assert (nm1, N, -2*eps);
%! assert (nminf, N, -2*eps);
%! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps);
%! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps);

%!test
%! N = 5;
%! A = hilb (N);
%! [nm1, v1, w1] = onenormest (A);
%! [nminf, vinf, winf] = onenormest (A', 6);
%! assert (nm1, norm (A, 1), -2*eps);
%! assert (nminf, norm (A, inf), -2*eps);
%! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps);
%! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps);

## Only likely to be within a factor of 10.
%!test
%! old_state = rand ("state");
%! restore_state = onCleanup (@() rand ("state", old_state));
%! rand ('state', 42);  % Initialize to guarantee reproducible results
%! N = 100;
%! A = rand (N);
%! [nm1, v1, w1] = onenormest (A);
%! [nminf, vinf, winf] = onenormest (A', 6);
%! assert (nm1, norm (A, 1), -.1);
%! assert (nminf, norm (A, inf), -.1);
%! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps);
%! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps);