File: rank.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (141 lines) | stat: -rw-r--r-- 3,508 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
## Copyright (C) 1993-2013 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} rank (@var{A})
## @deftypefnx {Function File} {} rank (@var{A}, @var{tol})
## Compute the rank of matrix @var{A}, using the singular value decomposition.
##
## The rank is taken to be the number of singular values of @var{A} that
## are greater than the specified tolerance @var{tol}.  If the second
## argument is omitted, it is taken to be
##
## @example
## tol = max (size (@var{A})) * sigma(1) * eps;
## @end example
##
## @noindent
## where @code{eps} is machine precision and @code{sigma(1)} is the largest
## singular value of @var{A}.
##
## The rank of a matrix is the number of linearly independent rows or
## columns and determines how many particular solutions exist to a system
## of equations.  Use @code{null} for finding the remaining homogenous
## solutions.
##
## Example:
##
## @example
## @group
## x = [1 2 3
##      4 5 6
##      7 8 9];
## rank (x)
##   @result{} 2
## @end group
## @end example
##
## @noindent
## The number of linearly independent rows is only 2 because the final row
## is a linear combination of -1*row1 + 2*row2.
##
## @seealso{null, sprank, svd}
## @end deftypefn

## Author: jwe

function retval = rank (A, tol)

  if (nargin == 1)
    sigma = svd (A);
    if (isempty (sigma))
      tolerance = 0;
    else
      if (isa (A, "single"))
        tolerance = max (size (A)) * sigma (1) * eps ("single");
      else
        tolerance = max (size (A)) * sigma (1) * eps;
      endif
    endif
  elseif (nargin == 2)
    sigma = svd (A);
    tolerance = tol;
  else
    print_usage ();
  endif

  retval = sum (sigma > tolerance);

endfunction


%!test
%! A = [1 2 3 4 5 6 7;
%!      4 5 6 7 8 9 12;
%!      1 2 3.1 4 5 6 7;
%!      2 3 4 5 6 7 8;
%!      3 4 5 6 7 8 9;
%!      4 5 6 7 8 9 10;
%!      5 6 7 8 9 10 11];
%! assert (rank (A), 4);

%!test
%! A = [1 2 3 4 5 6 7;
%!      4 5 6 7 8 9 12;
%!      1 2 3.0000001 4 5 6 7;
%!      4 5 6 7 8 9 12.00001;
%!      3 4 5 6 7 8 9;
%!      4 5 6 7 8 9 10;
%!      5 6 7 8 9 10 11];
%! assert (rank (A), 4);

%!test
%! A = [1 2 3 4 5 6 7;
%!      4 5 6 7 8 9 12;
%!      1 2 3 4 5 6 7;
%!      4 5 6 7 8 9 12.00001;
%!      3 4 5 6 7 8 9;
%!      4 5 6 7 8 9 10;
%!      5 6 7 8 9 10 11];
%! assert (rank (A), 3);

%!test
%! A = [1 2 3 4 5 6 7;
%!      4 5 6 7 8 9 12;
%!      1 2 3 4 5 6 7;
%!      4 5 6 7 8 9 12;
%!      3 4 5 6 7 8 9;
%!      4 5 6 7 8 9 10;
%!      5 6 7 8 9 10 11];
%! assert (rank (A), 3);

%!test
%! A = eye (100);
%! assert (rank (A), 100);

%!assert (rank ([]), 0)
%!assert (rank ([1:9]), 1)
%!assert (rank ([1:9]'), 1)

%!test
%! A = [1, 2, 3; 1, 2.001, 3; 1, 2, 3.0000001];
%! assert (rank (A), 3);
%! assert (rank (A,0.0009), 1);
%! assert (rank (A,0.0006), 2);
%! assert (rank (A,0.00000002), 3);