1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
## Copyright (C) 1993-2013 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} rank (@var{A})
## @deftypefnx {Function File} {} rank (@var{A}, @var{tol})
## Compute the rank of matrix @var{A}, using the singular value decomposition.
##
## The rank is taken to be the number of singular values of @var{A} that
## are greater than the specified tolerance @var{tol}. If the second
## argument is omitted, it is taken to be
##
## @example
## tol = max (size (@var{A})) * sigma(1) * eps;
## @end example
##
## @noindent
## where @code{eps} is machine precision and @code{sigma(1)} is the largest
## singular value of @var{A}.
##
## The rank of a matrix is the number of linearly independent rows or
## columns and determines how many particular solutions exist to a system
## of equations. Use @code{null} for finding the remaining homogenous
## solutions.
##
## Example:
##
## @example
## @group
## x = [1 2 3
## 4 5 6
## 7 8 9];
## rank (x)
## @result{} 2
## @end group
## @end example
##
## @noindent
## The number of linearly independent rows is only 2 because the final row
## is a linear combination of -1*row1 + 2*row2.
##
## @seealso{null, sprank, svd}
## @end deftypefn
## Author: jwe
function retval = rank (A, tol)
if (nargin == 1)
sigma = svd (A);
if (isempty (sigma))
tolerance = 0;
else
if (isa (A, "single"))
tolerance = max (size (A)) * sigma (1) * eps ("single");
else
tolerance = max (size (A)) * sigma (1) * eps;
endif
endif
elseif (nargin == 2)
sigma = svd (A);
tolerance = tol;
else
print_usage ();
endif
retval = sum (sigma > tolerance);
endfunction
%!test
%! A = [1 2 3 4 5 6 7;
%! 4 5 6 7 8 9 12;
%! 1 2 3.1 4 5 6 7;
%! 2 3 4 5 6 7 8;
%! 3 4 5 6 7 8 9;
%! 4 5 6 7 8 9 10;
%! 5 6 7 8 9 10 11];
%! assert (rank (A), 4);
%!test
%! A = [1 2 3 4 5 6 7;
%! 4 5 6 7 8 9 12;
%! 1 2 3.0000001 4 5 6 7;
%! 4 5 6 7 8 9 12.00001;
%! 3 4 5 6 7 8 9;
%! 4 5 6 7 8 9 10;
%! 5 6 7 8 9 10 11];
%! assert (rank (A), 4);
%!test
%! A = [1 2 3 4 5 6 7;
%! 4 5 6 7 8 9 12;
%! 1 2 3 4 5 6 7;
%! 4 5 6 7 8 9 12.00001;
%! 3 4 5 6 7 8 9;
%! 4 5 6 7 8 9 10;
%! 5 6 7 8 9 10 11];
%! assert (rank (A), 3);
%!test
%! A = [1 2 3 4 5 6 7;
%! 4 5 6 7 8 9 12;
%! 1 2 3 4 5 6 7;
%! 4 5 6 7 8 9 12;
%! 3 4 5 6 7 8 9;
%! 4 5 6 7 8 9 10;
%! 5 6 7 8 9 10 11];
%! assert (rank (A), 3);
%!test
%! A = eye (100);
%! assert (rank (A), 100);
%!assert (rank ([]), 0)
%!assert (rank ([1:9]), 1)
%!assert (rank ([1:9]'), 1)
%!test
%! A = [1, 2, 3; 1, 2.001, 3; 1, 2, 3.0000001];
%! assert (rank (A), 3);
%! assert (rank (A,0.0009), 1);
%! assert (rank (A,0.0006), 2);
%! assert (rank (A,0.00000002), 3);
|