File: fminbnd.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (286 lines) | stat: -rw-r--r-- 8,703 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
## Copyright (C) 2008-2013 VZLU Prague, a.s.
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.
##
## Author: Jaroslav Hajek <highegg@gmail.com>

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fminbnd (@var{fun}, @var{a}, @var{b}, @var{options})
## Find a minimum point of a univariate function.
##
## @var{fun} should be a function handle or name.  @var{a}, @var{b} specify a
## starting interval.  @var{options} is a structure specifying additional
## options.  Currently, @code{fminbnd} recognizes these options:
## @qcode{"FunValCheck"}, @qcode{"OutputFcn"}, @qcode{"TolX"},
## @qcode{"MaxIter"}, @qcode{"MaxFunEvals"}.  For a description of these
## options, see @ref{XREFoptimset,,optimset}.
##
## On exit, the function returns @var{x}, the approximate minimum point
## and @var{fval}, the function value thereof.
## @var{info} is an exit flag that can have these values:
##
## @itemize
## @item 1
## The algorithm converged to a solution.
##
## @item 0
## Maximum number of iterations or function evaluations has been exhausted.
##
## @item -1
## The algorithm has been terminated from user output function.
## @end itemize
##
## Notes: The search for a minimum is restricted to be in the interval
## bound by @var{a} and @var{b}.  If you only have an initial point
## to begin searching from you will need to use an unconstrained
## minimization algorithm such as @code{fminunc} or @code{fminsearch}.
## @code{fminbnd} internally uses a Golden Section search strategy.
## @seealso{fzero, fminunc, fminsearch, optimset}
## @end deftypefn

## This is patterned after opt/fmin.f from Netlib, which in turn is taken from
## Richard Brent: Algorithms For Minimization Without Derivatives, Prentice-Hall (1973)

## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("fminbnd");

function [x, fval, info, output] = fminbnd (fun, xmin, xmax, options = struct ())

  ## Get default options if requested.
  if (nargin == 1 && ischar (fun) && strcmp (fun, 'defaults'))
    x = optimset ("MaxIter", Inf, "MaxFunEvals", Inf, "TolX", 1e-8,
                  "OutputFcn", [], "FunValCheck", "off");
    return;
  endif

  if (nargin < 2 || nargin > 4)
    print_usage ();
  endif

  if (ischar (fun))
    fun = str2func (fun, "global");
  endif

  displ = optimget (options, "Display", "notify");
  funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");
  outfcn = optimget (options, "OutputFcn");
  tolx = optimget (options, "TolX", 1e-8);
  maxiter = optimget (options, "MaxIter", Inf);
  maxfev = optimget (options, "MaxFunEvals", Inf);

  if (funvalchk)
    ## Replace fun with a guarded version.
    fun = @(x) guarded_eval (fun, x);
  endif

  ## The default exit flag if exceeded number of iterations.
  info = 0;
  niter = 0;
  nfev = 0;
  sqrteps = eps (class (xmin + xmax));

  c = 0.5*(3 - sqrt (5));
  a = xmin; b = xmax;
  v = a + c*(b-a);
  w = x = v;
  e = 0;
  fv = fw = fval = fun (x);
  nfev++;

  ## Only for display purposes.
  iter(1).funccount = nfev;
  iter(1).x = x;
  iter(1).fx = fval;

  while (niter < maxiter && nfev < maxfev)
    xm = 0.5*(a+b);
    ## FIXME: the golden section search can actually get closer than sqrt(eps)
    ## sometimes.  Sometimes not, it depends on the function.  This is the
    ## strategy from the Netlib code.  Something yet smarter would be good.
    tol = 2 * sqrteps * abs (x) + tolx / 3;
    if (abs (x - xm) <= (2*tol - 0.5*(b-a)))
      info = 1;
      break;
    endif

    if (abs (e) > tol)
      dogs = false;
      ## Try inverse parabolic step.
      iter(niter+1).procedure = "parabolic";

      r = (x - w)*(fval - fv);
      q = (x - v)*(fval - fw);
      p = (x - v)*q - (x - w)*r;
      q = 2*(q - r);
      p *= -sign (q);
      q = abs (q);
      r = e;
      e = d;

      if (abs (p) < abs (0.5*q*r) && p > q*(a-x) && p < q*(b-x))
        ## The parabolic step is acceptable.
        d = p / q;
        u = x + d;

        ## f must not be evaluated too close to ax or bx.
        if (min (u-a, b-u) < 2*tol)
          d = tol * (sign (xm - x) + (xm == x));
        endif
      else
        dogs = true;
      endif
    else
      dogs = true;
    endif
    if (dogs)
      ## Default to golden section step.

      ## WARNING: This is also the "initial" procedure following
      ## MATLAB nomenclature. After the loop we'll fix the string
      ## for the first step.
      iter(niter+1).procedure = "golden";

      e = ifelse (x >= xm, a - x, b - x);
      d = c * e;
    endif

    ## f must not be evaluated too close to x.
    u = x + max (abs (d), tol) * (sign (d) + (d == 0));
    fu = fun (u);

    niter++;

    iter(niter).funccount = nfev++;
    iter(niter).x = u;
    iter(niter).fx = fu;

    ## update  a, b, v, w, and x

    if (fu <= fval)
      if (u < x)
        b = x;
      else
        a = x;
      endif
      v = w; fv = fw;
      w = x; fw = fval;
      x = u; fval = fu;
    else
      ## The following if-statement was originally executed even if fu == fval.
      if (u < x)
        a = u;
      else
        b = u;
      endif
      if (fu <= fw || w == x)
        v = w; fv = fw;
        w = u; fw = fu;
      elseif (fu <= fv || v == x || v == w)
        v = u;
        fv = fu;
      endif
    endif

    ## If there's an output function, use it now.
    if (outfcn)
      optv.funccount = nfev;
      optv.fval = fval;
      optv.iteration = niter;
      if (outfcn (x, optv, "iter"))
        info = -1;
        break;
      endif
    endif
  endwhile

  ## Fix the first step procedure.
  iter(1).procedure = "initial";

  ## Handle the "Display" option
  switch (displ)
    case "iter"
      print_formatted_table (iter);
      print_exit_msg (info, struct("TolX", tolx, "fx", fval));
    case "notify"
      if (info == 0)
        print_exit_msg (info, struct("fx",fval));
      endif
    case "final"
      print_exit_msg (info, struct("TolX", tolx, "fx", fval));
    case "off"
      "skip";
    otherwise
      warning ("unknown option for Display: '%s'", displ);
  endswitch

  output.iterations = niter;
  output.funcCount = nfev;
  output.bracket = [a, b];
  ## FIXME: bracketf possibly unavailable.

endfunction

## An assistant function that evaluates a function handle and checks for
## bad results.
function fx = guarded_eval (fun, x)
  fx = fun (x);
  fx = fx(1);
  if (! isreal (fx))
    error ("fminbnd:notreal", "fminbnd: non-real value encountered");
  elseif (isnan (fx))
    error ("fminbnd:isnan", "fminbnd: NaN value encountered");
  endif
endfunction

## A hack for printing a formatted table
function print_formatted_table (table)
  printf ("\n Func-count     x          f(x)         Procedure\n");
  for row=table
    printf("%5.5s        %7.7s    %8.8s\t%s\n",
           int2str (row.funccount), num2str (row.x,"%.5f"),
           num2str (row.fx,"%.6f"), row.procedure);
  endfor
  printf ("\n");
endfunction

## Print either a success termination message or bad news
function print_exit_msg (info, opt=struct())
  printf ("");
  switch (info)
    case 1
      printf ("Optimization terminated:\n");
      printf (" the current x satisfies the termination criteria using OPTIONS.TolX of %e\n", opt.TolX);
    case 0
      printf ("Exiting: Maximum number of iterations has been exceeded\n");
      printf ("         - increase MaxIter option.\n");
      printf ("         Current function value: %.6f\n", opt.fx);
    case -1
      "FIXME"; # FIXME: what's the message MATLAB prints for this case?
    otherwise
      error ("internal error - fminbnd() is bug, sorry!");
  endswitch
  printf ("\n");
endfunction


%!shared opt0
%! opt0 = optimset ("tolx", 0);
%!assert (fminbnd (@cos, pi/2, 3*pi/2, opt0), pi, 10*sqrt (eps))
%!assert (fminbnd (@(x) (x - 1e-3)^4, -1, 1, opt0), 1e-3, 10e-3*sqrt (eps))
%!assert (fminbnd (@(x) abs (x-1e7), 0, 1e10, opt0), 1e7, 10e7*sqrt (eps))
%!assert (fminbnd (@(x) x^2 + sin (2*pi*x), 0.4, 1, opt0), fzero (@(x) 2*x + 2*pi*cos (2*pi*x), [0.4, 1], opt0), sqrt (eps))