1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
## Copyright (C) 2003,2012 Andy Adler
## Copyright (C) 2002, 2013 N.J.Higham
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{x} =} fminsearch (@var{fun}, @var{x0})
## @deftypefnx {Function File} {@var{x} =} fminsearch (@var{fun}, @var{x0}, @var{options})
## @deftypefnx {Function File} {[@var{x}, @var{fval}] =} fminsearch (@dots{})
##
## Find a value of @var{x} which minimizes the function @var{fun}.
## The search begins at the point @var{x0} and iterates using the
## Nelder & Mead Simplex algorithm (a derivative-free method). This algorithm
## is better-suited to functions which have discontinuities or for which
## a gradient-based search such as @code{fminunc} fails.
##
## Options for the search are provided in the parameter @var{options} using
## the function @code{optimset}. Currently, @code{fminsearch} accepts the
## options: @qcode{"TolX"}, @qcode{"MaxFunEvals"}, @qcode{"MaxIter"},
## @qcode{"Display"}. For a description of these options, see
## @code{optimset}.
##
## On exit, the function returns @var{x}, the minimum point,
## and @var{fval}, the function value thereof.
##
## Example usages:
##
## @example
## @group
## fminsearch (@@(x) (x(1)-5).^2+(x(2)-8).^4, [0;0])
##
## fminsearch (inline ("(x(1)-5).^2+(x(2)-8).^4", "x"), [0;0])
## @end group
## @end example
## @seealso{fminbnd, fminunc, optimset}
## @end deftypefn
## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("fminsearch");
## FIXME: Add support for "exitflag" output variable
## FIXME: Add support for "output" output variable
## FIXME: For Display option, add 'final' and 'notify' options. Not too hard.
## FIXME: Add support for OutputFcn. See fminunc for a template
## FIXME: Add support for exiting based on TolFun. See fminunc for an idea.
function [x, fval] = fminsearch (fun, x0, options = struct ())
## Get default options if requested.
if (nargin == 1 && ischar (fun) && strcmp (fun, "defaults"))
x = optimset ("Display", "notify", "FunValCheck", "off",
"MaxFunEvals", 400, "MaxIter", 400,
"OutputFcn", [],
"TolFun", 1e-7, "TolX", 1e-4);
return;
endif
if (nargin < 2 || nargin > 3)
print_usage ();
endif
x = nmsmax (fun, x0, options);
if (isargout (2))
fval = feval (fun, x);
endif
endfunction
##NMSMAX Nelder-Mead simplex method for direct search optimization.
## [x, fmax, nf] = NMSMAX(FUN, x0, STOPIT, SAVIT) attempts to
## maximize the function FUN, using the starting vector x0.
## The Nelder-Mead direct search method is used.
## Output arguments:
## x = vector yielding largest function value found,
## fmax = function value at x,
## nf = number of function evaluations.
## The iteration is terminated when either
## - the relative size of the simplex is <= STOPIT(1)
## (default 1e-3),
## - STOPIT(2) function evaluations have been performed
## (default inf, i.e., no limit), or
## - a function value equals or exceeds STOPIT(3)
## (default inf, i.e., no test on function values).
## The form of the initial simplex is determined by STOPIT(4):
## STOPIT(4) = 0: regular simplex (sides of equal length, the default)
## STOPIT(4) = 1: right-angled simplex.
## Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).
## STOPIT(6) indicates the direction (ie. minimization or
## maximization.) Default is 1, maximization.
## set STOPIT(6)=-1 for minimization
## If a non-empty fourth parameter string SAVIT is present, then
## 'SAVE SAVIT x fmax nf' is executed after each inner iteration.
## NB: x0 can be a matrix. In the output argument, in SAVIT saves,
## and in function calls, x has the same shape as x0.
## NMSMAX(fun, x0, STOPIT, SAVIT, P1, P2,...) allows additional
## arguments to be passed to fun, via feval(fun,x,P1,P2,...).
## References:
## N. J. Higham, Optimization by direct search in matrix computations,
## SIAM J. Matrix Anal. Appl, 14(2): 317-333, 1993.
## C. T. Kelley, Iterative Methods for Optimization, Society for Industrial
## and Applied Mathematics, Philadelphia, PA, 1999.
## From Matrix Toolbox
## Copyright (C) 2002, 2013 N.J.Higham
## www.maths.man.ac.uk/~higham/mctoolbox
##
## Modifications for Octave by A.Adler 2003
function [stopit, savit, dirn, trace, tol, maxiter] = parse_options (options, x );
## Tolerance for cgce test based on relative size of simplex.
stopit(1) = tol = optimget (options, "TolX", 1e-4);
## Max no. of f-evaluations.
stopit(2) = optimget (options, "MaxFunEvals", length (x) * 200);
## Max no. of iterations
maxiter = optimget (options, "MaxIter", length (x) * 200);
## Default target for f-values.
stopit(3) = Inf; # FIXME: expose this parameter to the outside
## Default initial simplex.
stopit(4) = 0; # FIXME: expose this parameter to the outside
## Default: show progress.
display = optimget (options, "Display", "notify");
if (strcmp (display, "iter"))
stopit(5) = 1;
else
stopit(5) = 0;
endif
trace = stopit(5);
## Use function to minimize, not maximize
stopit(6) = dirn = -1;
## File name for snapshots.
savit = []; # FIXME: expose this parameter to the outside
endfunction
function [x, fmax, nf] = nmsmax (fun, x, options, savit, varargin)
[stopit, savit, dirn, trace, tol, maxiter] = parse_options (options, x);
if (strcmpi (optimget (options, "FunValCheck", "off"), "on"))
## Replace fcn with a guarded version.
fun = @(x) guarded_eval (fun, x);
endif
x0 = x(:); # Work with column vector internally.
n = length (x0);
V = [zeros(n,1) eye(n)];
f = zeros (n+1,1);
V(:,1) = x0;
f(1) = dirn * feval (fun,x,varargin{:});
fmax_old = f(1);
if (trace)
fprintf ("f(x0) = %9.4e\n", f(1));
endif
k = 0; m = 0;
## Set up initial simplex.
scale = max (norm (x0,Inf), 1);
if (stopit(4) == 0)
## Regular simplex - all edges have same length.
## Generated from construction given in reference [18, pp. 80-81] of [1].
alpha = scale / (n*sqrt (2)) * [sqrt(n+1)-1+n, sqrt(n+1)-1];
V(:,2:n+1) = (x0 + alpha(2)*ones (n,1)) * ones (1,n);
for j = 2:n+1
V(j-1,j) = x0(j-1) + alpha(1);
x(:) = V(:,j);
f(j) = dirn * feval (fun,x,varargin{:});
endfor
else
## Right-angled simplex based on co-ordinate axes.
alpha = scale * ones(n+1,1);
for j=2:n+1
V(:,j) = x0 + alpha(j)*V(:,j);
x(:) = V(:,j);
f(j) = dirn * feval (fun,x,varargin{:});
endfor
endif
nf = n+1;
how = "initial ";
[~,j] = sort (f);
j = j(n+1:-1:1);
f = f(j);
V = V(:,j);
alpha = 1; beta = 1/2; gamma = 2;
while (1) # Outer (and only) loop.
k++;
if (k > maxiter)
msg = "Exceeded maximum iterations...quitting\n";
break;
endif
fmax = f(1);
if (fmax > fmax_old)
if (! isempty (savit))
x(:) = V(:,1);
eval (["save " savit " x fmax nf"]);
endif
endif
if (trace)
fprintf ("Iter. %2.0f,", k);
fprintf ([" how = " how " "]);
fprintf ("nf = %3.0f, f = %9.4e (%2.1f%%)\n", nf, fmax, ...
100*(fmax-fmax_old)/(abs(fmax_old)+eps));
endif
fmax_old = fmax;
## Three stopping tests from MDSMAX.M
## Stopping Test 1 - f reached target value?
if (fmax >= stopit(3))
msg = "Exceeded target...quitting\n";
break;
endif
## Stopping Test 2 - too many f-evals?
if (nf >= stopit(2))
msg = "Max no. of function evaluations exceeded...quitting\n";
break;
endif
## Stopping Test 3 - converged? This is test (4.3) in [1].
v1 = V(:,1);
size_simplex = norm (V(:,2:n+1)-v1(:,ones (1,n)),1) / max (1, norm (v1,1));
if (size_simplex <= tol)
msg = sprintf ("Simplex size %9.4e <= %9.4e...quitting\n", ...
size_simplex, tol);
break;
endif
## One step of the Nelder-Mead simplex algorithm
## NJH: Altered function calls and changed CNT to NF.
## Changed each 'fr < f(1)' type test to '>' for maximization
## and re-ordered function values after sort.
vbar = (sum (V(:,1:n)')/n)'; # Mean value
vr = (1 + alpha)*vbar - alpha*V(:,n+1);
x(:) = vr;
fr = dirn * feval (fun,x,varargin{:});
nf = nf + 1;
vk = vr; fk = fr; how = "reflect, ";
if (fr > f(n))
if (fr > f(1))
ve = gamma*vr + (1-gamma)*vbar;
x(:) = ve;
fe = dirn * feval (fun,x,varargin{:});
nf = nf + 1;
if (fe > f(1))
vk = ve;
fk = fe;
how = "expand, ";
endif
endif
else
vt = V(:,n+1);
ft = f(n+1);
if (fr > ft)
vt = vr;
ft = fr;
endif
vc = beta*vt + (1-beta)*vbar;
x(:) = vc;
fc = dirn * feval (fun,x,varargin{:});
nf = nf + 1;
if (fc > f(n))
vk = vc; fk = fc;
how = "contract,";
else
for j = 2:n
V(:,j) = (V(:,1) + V(:,j))/2;
x(:) = V(:,j);
f(j) = dirn * feval (fun,x,varargin{:});
endfor
nf = nf + n-1;
vk = (V(:,1) + V(:,n+1))/2;
x(:) = vk;
fk = dirn * feval (fun,x,varargin{:});
nf = nf + 1;
how = "shrink, ";
endif
endif
V(:,n+1) = vk;
f(n+1) = fk;
[~,j] = sort(f);
j = j(n+1:-1:1);
f = f(j);
V = V(:,j);
endwhile # End of outer (and only) loop.
## Finished.
if (trace)
fprintf (msg);
endif
x(:) = V(:,1);
endfunction
## A helper function that evaluates a function and checks for bad results.
function y = guarded_eval (fun, x)
y = fun (x);
if (! (isreal (f)))
error ("fminsearch:notreal", "fminsearch: non-real value encountered");
elseif (any (isnan (f(:))))
error ("fminsearch:isnan", "fminsearch: NaN value encountered");
elseif (any (isinf (f(:))))
error ("fminsearch:isinf", "fminsearch: Inf value encountered");
endif
endfunction
%!demo
%! fcn = @(x) (x(1)-5).^2 + (x(2)-8).^4
%! x0 = [0;0];
%! [xmin, fval] = fminsearch (fcn, x0)
%!assert (fminsearch (@sin, 3, optimset ("MaxIter", 3)), 4.8750, 1e-4)
%!assert (fminsearch (@sin, 3, optimset ("MaxIter", 30)), 4.7124, 1e-4)
%!shared c
%! c = 1.5;
%!assert (fminsearch (@(x) x(1).^2+c*x(2).^2,[1;1]), [0;0], 1e-4)
|