File: fminunc.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (433 lines) | stat: -rw-r--r-- 13,181 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
## Copyright (C) 2008-2013 VZLU Prague, a.s.
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.
##
## Author: Jaroslav Hajek <highegg@gmail.com>

## -*- texinfo -*-
## @deftypefn  {Function File} {} fminunc (@var{fcn}, @var{x0})
## @deftypefnx {Function File} {} fminunc (@var{fcn}, @var{x0}, @var{options})
## @deftypefnx {Function File} {[@var{x}, @var{fval}, @var{info}, @var{output}, @var{grad}, @var{hess}] =} fminunc (@var{fcn}, @dots{})
## Solve an unconstrained optimization problem defined by the function
## @var{fcn}.
##
## @var{fcn} should accept a vector (array) defining the unknown variables,
## and return the objective function value, optionally with gradient.
## @code{fminunc} attempts to determine a vector @var{x} such that
## @code{@var{fcn} (@var{x})} is a local minimum.  @var{x0} determines a
## starting guess.  The shape of @var{x0} is preserved in all calls to
## @var{fcn}, but otherwise is treated as a column vector.
## @var{options} is a structure specifying additional options.
## Currently, @code{fminunc} recognizes these options:
## @qcode{"FunValCheck"}, @qcode{"OutputFcn"}, @qcode{"TolX"},
## @qcode{"TolFun"}, @qcode{"MaxIter"}, @qcode{"MaxFunEvals"},
## @qcode{"GradObj"}, @qcode{"FinDiffType"},
## @qcode{"TypicalX"}, @qcode{"AutoScaling"}.
##
## If @qcode{"GradObj"} is @qcode{"on"}, it specifies that @var{fcn},
## when called with 2 output arguments, also returns the Jacobian matrix
## of partial first derivatives at the requested point.
## @code{TolX} specifies the termination tolerance for the unknown variables
## @var{x}, while @code{TolFun} is a tolerance for the objective function
## value @var{fval}.  The default is @code{1e-7} for both options.
##
## For a description of the other options, see @code{optimset}.
##
## On return, @var{x} is the location of the minimum and @var{fval} contains
## the value of the objective function at @var{x}.  @var{info} may be one of the
## following values:
##
## @table @asis
## @item 1
## Converged to a solution point.  Relative gradient error is less than
## specified by @code{TolFun}.
##
## @item 2
## Last relative step size was less than @code{TolX}.
##
## @item 3
## Last relative change in function value was less than @code{TolFun}.
##
## @item 0
## Iteration limit exceeded---either maximum numer of algorithm iterations
## @code{MaxIter} or maximum number of function evaluations @code{MaxFunEvals}.
##
## @item -1
## Alogrithm terminated by @code{OutputFcn}.
##
## @item -3
## The trust region radius became excessively small.
## @end table
##
## Optionally, @code{fminunc} can return a structure with convergence statistics
## (@var{output}), the output gradient (@var{grad}) at the solution @var{x},
## and approximate Hessian (@var{hess}) at the solution @var{x}.
##
## Notes: If have only a single nonlinear equation of one variable then using
## @code{fminbnd} is usually a much better idea.  The algorithm used is a
## gradient search which depends on the objective function being differentiable.
## If the function has discontinuities it may be better to use a derivative-free
## algorithm such as @code{fminsearch}.
## @seealso{fminbnd, fminsearch, optimset}
## @end deftypefn

## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("fminunc");

function [x, fval, info, output, grad, hess] = fminunc (fcn, x0, options = struct ())

  ## Get default options if requested.
  if (nargin == 1 && ischar (fcn) && strcmp (fcn, 'defaults'))
    x = optimset ("MaxIter", 400, "MaxFunEvals", Inf,
                  "GradObj", "off", "TolX", 1e-7, "TolFun", 1e-7,
                  "OutputFcn", [], "FunValCheck", "off",
                  "FinDiffType", "central",
                  "TypicalX", [], "AutoScaling", "off");
    return;
  endif

  if (nargin < 2 || nargin > 3 || ! ismatrix (x0))
    print_usage ();
  endif

  if (ischar (fcn))
    fcn = str2func (fcn, "global");
  endif

  xsiz = size (x0);
  n = numel (x0);

  has_grad = strcmpi (optimget (options, "GradObj", "off"), "on");
  cdif = strcmpi (optimget (options, "FinDiffType", "central"), "central");
  maxiter = optimget (options, "MaxIter", 400);
  maxfev = optimget (options, "MaxFunEvals", Inf);
  outfcn = optimget (options, "OutputFcn");

  ## Get scaling matrix using the TypicalX option. If set to "auto", the
  ## scaling matrix is estimated using the jacobian.
  typicalx = optimget (options, "TypicalX");
  if (isempty (typicalx))
    typicalx = ones (n, 1);
  endif
  autoscale = strcmpi (optimget (options, "AutoScaling", "off"), "on");
  if (! autoscale)
    dg = 1 ./ typicalx;
  endif

  funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");

  if (funvalchk)
    ## Replace fcn with a guarded version.
    fcn = @(x) guarded_eval (fcn, x);
  endif

  ## These defaults are rather stringent. I think that normally, user
  ## prefers accuracy to performance.

  macheps = eps (class (x0));

  tolx = optimget (options, "TolX", 1e-7);
  tolf = optimget (options, "TolFun", 1e-7);

  factor = 0.1;
  ## FIXME: TypicalX corresponds to user scaling (???)
  autodg = true;

  niter = 1;
  nfev = 0;

  x = x0(:);
  info = 0;

  ## Initial evaluation.
  fval = fcn (reshape (x, xsiz));
  n = length (x);

  if (! isempty (outfcn))
    optimvalues.iter = niter;
    optimvalues.funccount = nfev;
    optimvalues.fval = fval;
    optimvalues.searchdirection = zeros (n, 1);
    state = 'init';
    stop = outfcn (x, optimvalues, state);
    if (stop)
      info = -1;
      break;
    endif
  endif

  nsuciter = 0;
  lastratio = 0;

  grad = [];

  ## Outer loop.
  while (niter < maxiter && nfev < maxfev && ! info)

    grad0 = grad;

    ## Calculate function value and gradient (possibly via FD).
    if (has_grad)
      [fval, grad] = fcn (reshape (x, xsiz));
      grad = grad(:);
      nfev ++;
    else
      grad = __fdjac__ (fcn, reshape (x, xsiz), fval, typicalx, cdif)(:);
      nfev += (1 + cdif) * length (x);
    endif

    if (niter == 1)
      ## Initialize by identity matrix.
      hesr = eye (n);
    else
      ## Use the damped BFGS formula.
      y = grad - grad0;
      sBs = sumsq (w);
      Bs = hesr'*w;
      sy = y'*s;
      theta = 0.8 / max (1 - sy / sBs, 0.8);
      r = theta * y + (1-theta) * Bs;
      hesr = cholupdate (hesr, r / sqrt (s'*r), "+");
      [hesr, info] = cholupdate (hesr, Bs / sqrt (sBs), "-");
      if (info)
        hesr = eye (n);
      endif
    endif

    if (autoscale)
      ## Second derivatives approximate the hessian.
      d2f = norm (hesr, 'columns').';
      if (niter == 1)
        dg = d2f;
      else
        ## FIXME: maybe fixed lower and upper bounds?
        dg = max (0.1*dg, d2f);
      endif
    endif

    if (niter == 1)
      xn = norm (dg .* x);
      ## FIXME: something better?
      delta = factor * max (xn, 1);
    endif

    ## FIXME: why tolf*n*xn?  If abs (e) ~ abs(x) * eps is a vector
    ## of perturbations of x, then norm (hesr*e) <= eps*xn, i.e. by
    ## tolf ~ eps we demand as much accuracy as we can expect.
    if (norm (grad) <= tolf*n*xn)
      info = 1;
      break;
    endif

    suc = false;
    decfac = 0.5;

    ## Inner loop.
    while (! suc && niter <= maxiter && nfev < maxfev && ! info)

      s = - __doglegm__ (hesr, grad, dg, delta);

      sn = norm (dg .* s);
      if (niter == 1)
        delta = min (delta, sn);
      endif

      fval1 = fcn (reshape (x + s, xsiz)) (:);
      nfev ++;

      if (fval1 < fval)
        ## Scaled actual reduction.
        actred =  (fval - fval1) / (abs (fval1) + abs (fval));
      else
        actred = -1;
      endif

      w = hesr*s;
      ## Scaled predicted reduction, and ratio.
      t = 1/2 * sumsq (w) + grad'*s;
      if (t < 0)
        prered = -t/(abs (fval) + abs (fval + t));
        ratio = actred / prered;
      else
        prered = 0;
        ratio = 0;
      endif

      ## Update delta.
      if (ratio < min (max (0.1, 0.8*lastratio), 0.9))
        delta *= decfac;
        decfac ^= 1.4142;
        if (delta <= 1e1*macheps*xn)
          ## Trust region became uselessly small.
          info = -3;
          break;
        endif
      else
        lastratio = ratio;
        decfac = 0.5;
        if (abs (1-ratio) <= 0.1)
          delta = 1.4142*sn;
        elseif (ratio >= 0.5)
          delta = max (delta, 1.4142*sn);
        endif
      endif

      if (ratio >= 1e-4)
        ## Successful iteration.
        x += s;
        xn = norm (dg .* x);
        fval = fval1;
        nsuciter++;
        suc = true;
      endif

      niter ++;

      ## FIXME: should outputfcn be called only after a successful iteration?
      if (! isempty (outfcn))
        optimvalues.iter = niter;
        optimvalues.funccount = nfev;
        optimvalues.fval = fval;
        optimvalues.searchdirection = s;
        state = 'iter';
        stop = outfcn (x, optimvalues, state);
        if (stop)
          info = -1;
          break;
        endif
      endif

      ## Tests for termination conditions. A mysterious place, anything
      ## can happen if you change something here...

      ## The rule of thumb (which I'm not sure M*b is quite following)
      ## is that for a tolerance that depends on scaling, only 0 makes
      ## sense as a default value. But 0 usually means uselessly long
      ## iterations, so we need scaling-independent tolerances wherever
      ## possible.

      ## The following tests done only after successful step.
      if (ratio >= 1e-4)
        ## This one is classic. Note that we use scaled variables again,
        ## but compare to scaled step, so nothing bad.
        if (sn <= tolx*xn)
          info = 2;
          ## Again a classic one.
        elseif (actred < tolf)
          info = 3;
        endif
      endif

    endwhile
  endwhile

  ## Restore original shapes.
  x = reshape (x, xsiz);

  output.iterations = niter;
  output.successful = nsuciter;
  output.funcCount = nfev;

  if (nargout > 5)
    hess = hesr'*hesr;
  endif

endfunction

## A helper function that evaluates a function and checks for bad results.
function [fx, gx] = guarded_eval (fun, x)
  if (nargout > 1)
    [fx, gx] = fun (x);
  else
    fx = fun (x);
    gx = [];
  endif

  if (! (isreal (fx) && isreal (gx)))
    error ("fminunc:notreal", "fminunc: non-real value encountered");
  elseif (any (isnan (fx(:))))
    error ("fminunc:isnan", "fminunc: NaN value encountered");
  elseif (any (isinf (fx(:))))
    error ("fminunc:isinf", "fminunc: Inf value encountered");
  endif
endfunction


%!function f = __rosenb (x)
%!  n = length (x);
%!  f = sumsq (1 - x(1:n-1)) + 100 * sumsq (x(2:n) - x(1:n-1).^2);
%!endfunction
%!test
%! [x, fval, info, out] = fminunc (@__rosenb, [5, -5]);
%! tol = 2e-5;
%! assert (info > 0);
%! assert (x, ones (1, 2), tol);
%! assert (fval, 0, tol);
%!test
%! [x, fval, info, out] = fminunc (@__rosenb, zeros (1, 4));
%! tol = 2e-5;
%! assert (info > 0);
%! assert (x, ones (1, 4), tol);
%! assert (fval, 0, tol);
%% Test FunValCheck works correctly
%!assert (fminunc (@(x) x^2, 1, optimset ("FunValCheck", "on")), 0, eps)
%!error <non-real value> fminunc (@(x) x + i, 1, optimset ("FunValCheck", "on"))
%!error <NaN value> fminunc (@(x) x + NaN, 1, optimset ("FunValCheck", "on"))
%!error <Inf value> fminunc (@(x) x + Inf, 1, optimset ("FunValCheck", "on"))


## Solve the double dogleg trust-region minimization problem:
## Minimize 1/2*norm(r*x)^2  subject to the constraint norm(d.*x) <= delta,
## x being a convex combination of the gauss-newton and scaled gradient.

## TODO: error checks
## TODO: handle singularity, or leave it up to mldivide?

function x = __doglegm__ (r, g, d, delta)
  ## Get Gauss-Newton direction.
  b = r' \ g;
  x = r \ b;
  xn = norm (d .* x);
  if (xn > delta)
    ## GN is too big, get scaled gradient.
    s = g ./ d;
    sn = norm (s);
    if (sn > 0)
      ## Normalize and rescale.
      s = (s / sn) ./ d;
      ## Get the line minimizer in s direction.
      tn = norm (r*s);
      snm = (sn / tn) / tn;
      if (snm < delta)
        ## Get the dogleg path minimizer.
        bn = norm (b);
        dxn = delta/xn; snmd = snm/delta;
        t = (bn/sn) * (bn/xn) * snmd;
        t -= dxn * snmd^2 - sqrt ((t-dxn)^2 + (1-dxn^2)*(1-snmd^2));
        alpha = dxn*(1-snmd^2) / t;
      else
        alpha = 0;
      endif
    else
      alpha = delta / xn;
      snm = 0;
    endif
    ## Form the appropriate convex combination.
    x = alpha * x + ((1-alpha) * min (snm, delta)) * s;
  endif
endfunction