1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
## Copyright (C) 2008-2013 Bill Denney
## Copyright (C) 2008 Jaroslav Hajek
## Copyright (C) 2009 VZLU Prague
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{x} =} lsqnonneg (@var{c}, @var{d})
## @deftypefnx {Function File} {@var{x} =} lsqnonneg (@var{c}, @var{d}, @var{x0})
## @deftypefnx {Function File} {@var{x} =} lsqnonneg (@var{c}, @var{d}, @var{x0}, @var{options})
## @deftypefnx {Function File} {[@var{x}, @var{resnorm}] =} lsqnonneg (@dots{})
## @deftypefnx {Function File} {[@var{x}, @var{resnorm}, @var{residual}] =} lsqnonneg (@dots{})
## @deftypefnx {Function File} {[@var{x}, @var{resnorm}, @var{residual}, @var{exitflag}] =} lsqnonneg (@dots{})
## @deftypefnx {Function File} {[@var{x}, @var{resnorm}, @var{residual}, @var{exitflag}, @var{output}] =} lsqnonneg (@dots{})
## @deftypefnx {Function File} {[@var{x}, @var{resnorm}, @var{residual}, @var{exitflag}, @var{output}, @var{lambda}] =} lsqnonneg (@dots{})
## Minimize @code{norm (@var{c}*@var{x} - d)} subject to
## @code{@var{x} >= 0}. @var{c} and @var{d} must be real. @var{x0} is an
## optional initial guess for @var{x}.
## Currently, @code{lsqnonneg}
## recognizes these options: @qcode{"MaxIter"}, @qcode{"TolX"}.
## For a description of these options, see @ref{XREFoptimset,,optimset}.
##
## Outputs:
##
## @itemize @bullet
## @item resnorm
##
## The squared 2-norm of the residual: norm (@var{c}*@var{x}-@var{d})^2
##
## @item residual
##
## The residual: @var{d}-@var{c}*@var{x}
##
## @item exitflag
##
## An indicator of convergence. 0 indicates that the iteration count
## was exceeded, and therefore convergence was not reached; >0 indicates
## that the algorithm converged. (The algorithm is stable and will
## converge given enough iterations.)
##
## @item output
##
## A structure with two fields:
##
## @itemize @bullet
## @item @qcode{"algorithm"}: The algorithm used (@qcode{"nnls"})
##
## @item @qcode{"iterations"}: The number of iterations taken.
## @end itemize
##
## @item lambda
##
## Not implemented.
## @end itemize
## @seealso{optimset, pqpnonneg}
## @end deftypefn
## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("lsqnonneg");
## This is implemented from Lawson and Hanson's 1973 algorithm on page
## 161 of Solving Least Squares Problems.
function [x, resnorm, residual, exitflag, output, lambda] = lsqnonneg (c, d, x = [], options = struct ())
if (nargin == 1 && ischar (c) && strcmp (c, 'defaults'))
x = optimset ("MaxIter", 1e5);
return;
endif
if (! (nargin >= 2 && nargin <= 4 && ismatrix (c) && ismatrix (d) && isstruct (options)))
print_usage ();
endif
## Lawson-Hanson Step 1 (LH1): initialize the variables.
m = rows (c);
n = columns (c);
if (isempty (x))
## Initial guess is 0s.
x = zeros (n, 1);
else
## ensure nonnegative guess.
x = max (x, 0);
endif
useqr = m >= n;
max_iter = optimget (options, "MaxIter", 1e5);
## Initialize P, according to zero pattern of x.
p = find (x > 0).';
if (useqr)
## Initialize the QR factorization, economized form.
[q, r] = qr (c(:,p), 0);
endif
iter = 0;
## LH3: test for completion.
while (iter < max_iter)
while (iter < max_iter)
iter++;
## LH6: compute the positive matrix and find the min norm solution
## of the positive problem.
if (useqr)
xtmp = r \ q'*d;
else
xtmp = c(:,p) \ d;
endif
idx = find (xtmp < 0);
if (isempty (idx))
## LH7: tmp solution found, iterate.
x(:) = 0;
x(p) = xtmp;
break;
else
## LH8, LH9: find the scaling factor.
pidx = p(idx);
sf = x(pidx)./(x(pidx) - xtmp(idx));
alpha = min (sf);
## LH10: adjust X.
xx = zeros (n, 1);
xx(p) = xtmp;
x += alpha*(xx - x);
## LH11: move from P to Z all X == 0.
## This corresponds to those indices where minimum of sf is attained.
idx = idx (sf == alpha);
p(idx) = [];
if (useqr)
## update the QR factorization.
[q, r] = qrdelete (q, r, idx);
endif
endif
endwhile
## compute the gradient.
w = c'*(d - c*x);
w(p) = [];
tolx = optimget (options, "TolX", 10*eps*norm (c, 1)*length (c));
if (! any (w > tolx))
if (useqr)
## verify the solution achieved using qr updating.
## in the best case, this should only take a single step.
useqr = false;
continue;
else
## we're finished.
break;
endif
endif
## find the maximum gradient.
idx = find (w == max (w));
if (numel (idx) > 1)
warning ("lsqnonneg:nonunique",
"a non-unique solution may be returned due to equal gradients");
idx = idx(1);
endif
## move the index from Z to P. Keep P sorted.
z = [1:n]; z(p) = [];
zidx = z(idx);
jdx = 1 + lookup (p, zidx);
p = [p(1:jdx-1), zidx, p(jdx:end)];
if (useqr)
## insert the column into the QR factorization.
[q, r] = qrinsert (q, r, jdx, c(:,zidx));
endif
endwhile
## LH12: complete.
## Generate the additional output arguments.
if (nargout > 1)
resnorm = norm (c*x - d) ^ 2;
endif
if (nargout > 2)
residual = d - c*x;
endif
exitflag = iter;
if (nargout > 3 && iter >= max_iter)
exitflag = 0;
endif
if (nargout > 4)
output = struct ("algorithm", "nnls", "iterations", iter);
endif
if (nargout > 5)
lambda = zeros (size (x));
lambda(p) = w;
endif
endfunction
%!test
%! C = [1 0;0 1;2 1];
%! d = [1;3;-2];
%! assert (lsqnonneg (C, d), [0;0.5], 100*eps);
%!test
%! C = [0.0372 0.2869;0.6861 0.7071;0.6233 0.6245;0.6344 0.6170];
%! d = [0.8587;0.1781;0.0747;0.8405];
%! xnew = [0;0.6929];
%! assert (lsqnonneg (C, d), xnew, 0.0001);
|