File: qp.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (422 lines) | stat: -rw-r--r-- 12,055 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
## Copyright (C) 2013 Julien Bect
## Copyright (C) 2000-2013 Gabriele Pannocchia.
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{x}, @var{obj}, @var{info}, @var{lambda}] =} qp (@var{x0}, @var{H})
## @deftypefnx {Function File} {[@var{x}, @var{obj}, @var{info}, @var{lambda}] =} qp (@var{x0}, @var{H}, @var{q})
## @deftypefnx {Function File} {[@var{x}, @var{obj}, @var{info}, @var{lambda}] =} qp (@var{x0}, @var{H}, @var{q}, @var{A}, @var{b})
## @deftypefnx {Function File} {[@var{x}, @var{obj}, @var{info}, @var{lambda}] =} qp (@var{x0}, @var{H}, @var{q}, @var{A}, @var{b}, @var{lb}, @var{ub})
## @deftypefnx {Function File} {[@var{x}, @var{obj}, @var{info}, @var{lambda}] =} qp (@var{x0}, @var{H}, @var{q}, @var{A}, @var{b}, @var{lb}, @var{ub}, @var{A_lb}, @var{A_in}, @var{A_ub})
## @deftypefnx {Function File} {[@var{x}, @var{obj}, @var{info}, @var{lambda}] =} qp (@dots{}, @var{options})
## Solve the quadratic program
## @tex
## $$
##  \min_x {1 \over 2} x^T H x + x^T q
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## min 0.5 x'*H*x + x'*q
##  x
## @end group
## @end example
##
## @end ifnottex
## subject to
## @tex
## $$
##  Ax = b \qquad lb \leq x \leq ub \qquad A_{lb} \leq A_{in} \leq A_{ub}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## A*x = b
## lb <= x <= ub
## A_lb <= A_in*x <= A_ub
## @end group
## @end example
##
## @end ifnottex
## @noindent
## using a null-space active-set method.
##
## Any bound (@var{A}, @var{b}, @var{lb}, @var{ub}, @var{A_lb},
## @var{A_ub}) may be set to the empty matrix (@code{[]}) if not
## present.  If the initial guess is feasible the algorithm is faster.
##
## @table @var
## @item options
## An optional structure containing the following
## parameter(s) used to define the behavior of the solver.  Missing elements
## in the structure take on default values, so you only need to set the
## elements that you wish to change from the default.
##
## @table @code
## @item MaxIter (default: 200)
## Maximum number of iterations.
## @end table
## @end table
##
## @table @var
## @item info
## Structure containing run-time information about the algorithm.  The
## following fields are defined:
##
## @table @code
## @item solveiter
## The number of iterations required to find the solution.
##
## @item info
## An integer indicating the status of the solution.
##
## @table @asis
## @item 0
## The problem is feasible and convex.  Global solution found.
##
## @item 1
## The problem is not convex.  Local solution found.
##
## @item 2
## The problem is not convex and unbounded.
##
## @item 3
## Maximum number of iterations reached.
##
## @item 6
## The problem is infeasible.
## @end table
## @end table
## @end table
## @end deftypefn

## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("qp");

function [x, obj, INFO, lambda] = qp (x0, H, varargin)

  nargs = nargin;

  if (nargin == 1 && ischar (x0) && strcmp (x0, 'defaults'))
    x = optimset ("MaxIter", 200);
    return;
  endif

  if (nargs > 2 && isstruct (varargin{end}))
    options = varargin{end};
    nargs--;
  else
    options = struct ();
  endif

  if (nargs >= 3)
    q = varargin{1};
  else
    q = [];
  endif

  if (nargs >= 5)
    A = varargin{2};
    b = varargin{3};
  else
    A = [];
    b = [];
  endif

  if (nargs >= 7)
    lb = varargin{4};
    ub = varargin{5};
  else
    lb = [];
    ub = [];
  endif

  if (nargs == 10)
    A_lb = varargin{6};
    A_in = varargin{7};
    A_ub = varargin{8};
  else
    A_lb = [];
    A_in = [];
    A_ub = [];
  endif

  if (nargs == 2 || nargs == 3 || nargs == 5 || nargs == 7 || nargs == 10)

    maxit = optimget (options, "MaxIter", 200);

    ## Checking the quadratic penalty
    if (! issquare (H))
      error ("qp: quadratic penalty matrix not square");
    elseif (! ishermitian (H))
      ## warning ("qp: quadratic penalty matrix not hermitian");
      H = (H + H')/2;
    endif
    n = rows (H);

    ## Checking the initial guess (if empty it is resized to the
    ## right dimension and filled with 0)
    if (isempty (x0))
      x0 = zeros (n, 1);
    elseif (numel (x0) != n)
      error ("qp: the initial guess has incorrect length");
    endif

    ## Linear penalty.
    if (isempty (q))
      q = zeros (n, 1);
    elseif (numel (q) != n)
      error ("qp: the linear term has incorrect length");
    endif

    ## Equality constraint matrices
    if (isempty (A) || isempty (b))
      A = zeros (0, n);
      b = zeros (0, 1);
      n_eq = 0;
    else
      [n_eq, n1] = size (A);
      if (n1 != n)
        error ("qp: equality constraint matrix has incorrect column dimension");
      endif
      if (numel (b) != n_eq)
        error ("qp: equality constraint matrix and vector have inconsistent dimension");
      endif
    endif

    ## Bound constraints
    Ain = zeros (0, n);
    bin = zeros (0, 1);
    n_in = 0;
    if (nargs > 5)
      if (! isempty (lb))
        if (numel (lb) != n)
          error ("qp: lower bound has incorrect length");
        elseif (isempty (ub))
          Ain = [Ain; eye(n)];
          bin = [bin; lb];
        endif
      endif

      if (! isempty (ub))
        if (numel (ub) != n)
          error ("qp: upper bound has incorrect length");
        elseif (isempty (lb))
          Ain = [Ain; -eye(n)];
          bin = [bin; -ub];
        endif
      endif

      if (! isempty (lb) && ! isempty (ub))
        rtol = sqrt (eps);
        for i = 1:n
          if (abs (lb (i) - ub(i)) < rtol*(1 + max (abs (lb(i) + ub(i)))))
            ## These are actually an equality constraint
            tmprow = zeros (1,n);
            tmprow(i) = 1;
            A = [A;tmprow];
            b = [b; 0.5*(lb(i) + ub(i))];
            n_eq = n_eq + 1;
          else
            tmprow = zeros (1,n);
            tmprow(i) = 1;
            Ain = [Ain; tmprow; -tmprow];
            bin = [bin; lb(i); -ub(i)];
            n_in = n_in + 2;
          endif
        endfor
      endif
    endif

    ## Inequality constraints
    if (nargs > 7)
      [dimA_in, n1] = size (A_in);
      if (n1 != n)
        error ("qp: inequality constraint matrix has incorrect column dimension");
      else
        if (! isempty (A_lb))
          if (numel (A_lb) != dimA_in)
            error ("qp: inequality constraint matrix and lower bound vector inconsistent");
          elseif (isempty (A_ub))
            Ain = [Ain; A_in];
            bin = [bin; A_lb];
          endif
        endif
        if (! isempty (A_ub))
          if (numel (A_ub) != dimA_in)
            error ("qp: inequality constraint matrix and upper bound vector inconsistent");
          elseif (isempty (A_lb))
            Ain = [Ain; -A_in];
            bin = [bin; -A_ub];
          endif
        endif

        if (! isempty (A_lb) && ! isempty (A_ub))
          rtol = sqrt (eps);
          for i = 1:dimA_in
            if (abs (A_lb(i) - A_ub(i)) < rtol*(1 + max (abs (A_lb(i) + A_ub(i)))))
              ## These are actually an equality constraint
              tmprow = A_in(i,:);
              A = [A;tmprow];
              b = [b; 0.5*(A_lb(i) + A_ub(i))];
              n_eq = n_eq + 1;
            else
              tmprow = A_in(i,:);
              Ain = [Ain; tmprow; -tmprow];
              bin = [bin; A_lb(i); -A_ub(i)];
              n_in = n_in + 2;
            endif
          endfor
        endif
      endif
    endif

    ## Now we should have the following QP:
    ##
    ##   min_x  0.5*x'*H*x + x'*q
    ##   s.t.   A*x = b
    ##          Ain*x >= bin

    ## Discard inequality constraints that have -Inf bounds since those
    ## will never be active.
    idx = isinf (bin) & bin < 0;

    bin(idx) = [];
    Ain(idx,:) = [];

    n_in = numel (bin);

    ## Check if the initial guess is feasible.
    if (isa (x0, "single") || isa (H, "single") || isa (q, "single") || isa (A, "single")
        || isa (b, "single"))
      rtol = sqrt (eps ("single"));
    else
      rtol = sqrt (eps);
    endif

    eq_infeasible = (n_eq > 0 && norm (A*x0-b) > rtol*(1+abs (b)));
    in_infeasible = (n_in > 0 && any (Ain*x0-bin < -rtol*(1+abs (bin))));

    info = 0;
    if (eq_infeasible || in_infeasible)
      ## The initial guess is not feasible.
      ## First define xbar that is feasible with respect to the equality
      ## constraints.
      if (eq_infeasible)
        if (rank (A) < n_eq)
          error ("qp: equality constraint matrix must be full row rank");
        endif
        xbar = pinv (A) * b;
      else
        xbar = x0;
      endif

      ## Check if xbar is feasible with respect to the inequality
      ## constraints also.
      if (n_in > 0)
        res = Ain * xbar - bin;
        if (any (res < -rtol * (1 + abs (bin))))
          ## xbar is not feasible with respect to the inequality
          ## constraints.  Compute a step in the null space of the
          ## equality constraints, by solving a QP.  If the slack is
          ## small, we have a feasible initial guess.  Otherwise, the
          ## problem is infeasible.
          if (n_eq > 0)
            Z = null (A);
            if (isempty (Z))
              ## The problem is infeasible because A is square and full
              ## rank, but xbar is not feasible.
              info = 6;
            endif
          endif

          if (info != 6)
            ## Solve an LP with additional slack variables to find
            ## a feasible starting point.
            gamma = eye (n_in);
            if (n_eq > 0)
              Atmp = [Ain*Z, gamma];
              btmp = -res;
            else
              Atmp = [Ain, gamma];
              btmp = bin;
            endif
            ctmp = [zeros(n-n_eq, 1); ones(n_in, 1)];
            lb = [-Inf(n-n_eq,1); zeros(n_in,1)];
            ub = [];
            ctype = repmat ("L", n_in, 1);
            [P, dummy, status] = glpk (ctmp, Atmp, btmp, lb, ub, ctype);
            if ((status == 0)
                && all (abs (P(n-n_eq+1:end)) < rtol * (1 + norm (btmp))))
              ## We found a feasible starting point
              if (n_eq > 0)
                x0 = xbar + Z*P(1:n-n_eq);
              else
                x0 = P(1:n);
              endif
            else
              ## The problem is infeasible
              info = 6;
            endif
          endif
        else
          ## xbar is feasible.  We use it a starting point.
          x0 = xbar;
        endif
      else
        ## xbar is feasible.  We use it a starting point.
        x0 = xbar;
      endif
    endif

    if (info == 0)
      ## The initial (or computed) guess is feasible.
      ## We call the solver.
      [x, lambda, info, iter] = __qp__ (x0, H, q, A, b, Ain, bin, maxit);
    else
      iter = 0;
      x = x0;
      lambda = [];
    endif
    obj = 0.5 * x' * H * x + q' * x;
    INFO.solveiter = iter;
    INFO.info = info;

  else
    print_usage ();
  endif

endfunction


%% Test infeasible initial guess (bug #40536)
%!testif HAVE_GLPK
%!
%! H = 1;  q = 0;                # objective: x -> 0.5 x^2
%! A = 1;  lb = 1;  ub = +inf;   # constraint: x >= 1
%! x0 = 0;                       # infeasible initial guess
%!
%! [x, obj_qp, INFO, lambda] = qp (x0, H, q, [], [], [], [], lb, A, ub);
%!
%! assert (isstruct (INFO) && isfield (INFO, "info") && (INFO.info == 0));
%! assert ([x obj_qp], [1.0 0.5], eps);