File: sqp.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (770 lines) | stat: -rw-r--r-- 19,390 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
## Copyright (C) 2005-2013 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{x}, @var{obj}, @var{info}, @var{iter}, @var{nf}, @var{lambda}] =} sqp (@var{x0}, @var{phi})
## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g})
## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h})
## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub})
## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub}, @var{maxiter})
## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub}, @var{maxiter}, @var{tol})
## Solve the nonlinear program
## @tex
## $$
## \min_x \phi (x)
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## min phi (x)
##  x
## @end group
## @end example
##
## @end ifnottex
## subject to
## @tex
## $$
##  g(x) = 0 \qquad h(x) \geq 0 \qquad lb \leq x \leq ub
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## g(x)  = 0
## h(x) >= 0
## lb <= x <= ub
## @end group
## @end example
##
## @end ifnottex
## @noindent
## using a sequential quadratic programming method.
##
## The first argument is the initial guess for the vector @var{x0}.
##
## The second argument is a function handle pointing to the objective
## function @var{phi}.  The objective function must accept one vector
## argument and return a scalar.
##
## The second argument may also be a 2- or 3-element cell array of
## function handles.  The first element should point to the objective
## function, the second should point to a function that computes the
## gradient of the objective function, and the third should point to a
## function that computes the Hessian of the objective function.  If the
## gradient function is not supplied, the gradient is computed by finite
## differences.  If the Hessian function is not supplied, a BFGS update
## formula is used to approximate the Hessian.
##
## When supplied, the gradient function @code{@var{phi}@{2@}} must accept
## one vector argument and return a vector.  When supplied, the Hessian
## function @code{@var{phi}@{3@}} must accept one vector argument and
## return a matrix.
##
## The third and fourth arguments @var{g} and @var{h} are function
## handles pointing to functions that compute the equality constraints
## and the inequality constraints, respectively.  If the problem does
## not have equality (or inequality) constraints, then use an empty
## matrix ([]) for @var{g} (or @var{h}).  When supplied, these equality
## and inequality constraint functions must accept one vector argument
## and return a vector.
##
## The third and fourth arguments may also be 2-element cell arrays of
## function handles.  The first element should point to the constraint
## function and the second should point to a function that computes the
## gradient of the constraint function:
## @tex
## $$
##  \Bigg( {\partial f(x) \over \partial x_1},
##         {\partial f(x) \over \partial x_2}, \ldots,
##         {\partial f(x) \over \partial x_N} \Bigg)^T
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##             [ d f(x)   d f(x)        d f(x) ]
## transpose ( [ ------   -----   ...   ------ ] )
##             [  dx_1     dx_2          dx_N  ]
## @end group
## @end example
##
## @end ifnottex
## The fifth and sixth arguments, @var{lb} and @var{ub}, contain lower
## and upper bounds on @var{x}.  These must be consistent with the
## equality and inequality constraints @var{g} and @var{h}.  If the
## arguments are vectors then @var{x}(i) is bound by @var{lb}(i) and
## @var{ub}(i).  A bound can also be a scalar in which case all elements
## of @var{x} will share the same bound.  If only one bound (lb, ub) is
## specified then the other will default to (-@var{realmax},
## +@var{realmax}).
##
## The seventh argument @var{maxiter} specifies the maximum number of
## iterations.  The default value is 100.
##
## The eighth argument @var{tol} specifies the tolerance for the
## stopping criteria.  The default value is @code{sqrt (eps)}.
##
## The value returned in @var{info} may be one of the following:
##
## @table @asis
## @item 101
## The algorithm terminated normally.
## Either all constraints meet the requested tolerance, or the stepsize,
## @tex
## $\Delta x,$
## @end tex
## @ifnottex
## delta @var{x},
## @end ifnottex
## is less than @code{@var{tol} * norm (x)}.
##
## @item 102
## The BFGS update failed.
##
## @item 103
## The maximum number of iterations was reached.
## @end table
##
## An example of calling @code{sqp}:
##
## @example
## function r = g (x)
##   r = [ sumsq(x)-10;
##         x(2)*x(3)-5*x(4)*x(5);
##         x(1)^3+x(2)^3+1 ];
## endfunction
##
## function obj = phi (x)
##   obj = exp (prod (x)) - 0.5*(x(1)^3+x(2)^3+1)^2;
## endfunction
##
## x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];
##
## [x, obj, info, iter, nf, lambda] = sqp (x0, @@phi, @@g, [])
##
## x =
##
##   -1.71714
##    1.59571
##    1.82725
##   -0.76364
##   -0.76364
##
## obj = 0.053950
## info = 101
## iter = 8
## nf = 10
## lambda =
##
##   -0.0401627
##    0.0379578
##   -0.0052227
## @end example
##
## @seealso{qp}
## @end deftypefn

function [x, obj, info, iter, nf, lambda] = sqp (x0, objf, cef, cif, lb, ub, maxiter, tolerance)

  globals = struct (); # data and handles, needed and changed by subfunctions

  if (nargin < 2 || nargin > 8 || nargin == 5)
    print_usage ();
  endif

  if (!isvector (x0))
    error ("sqp: X0 must be a vector");
  endif
  if (rows (x0) == 1)
    x0 = x0';
  endif

  have_hess = 0;
  if (iscell (objf))
    switch (numel (objf))
      case 1
        obj_fun = objf{1};
        obj_grd = @ (x) fd_obj_grd (x, obj_fun);
      case 2
        obj_fun = objf{1};
        obj_grd = objf{2};
      case 3
        obj_fun = objf{1};
        obj_grd = objf{2};
        obj_hess = objf{3};
        have_hess = 1;
      otherwise
        error ("sqp: invalid objective function specification");
    endswitch
  else
    obj_fun = objf;   # No cell array, only obj_fun set
    obj_grd = @ (x) fd_obj_grd (x, obj_fun);
  endif

  ce_fun = @empty_cf;
  ce_grd = @empty_jac;
  if (nargin > 2)
    if (iscell (cef))
      switch (numel (cef))
        case 1
          ce_fun = cef{1};
          ce_grd = @ (x) fd_ce_jac (x, ce_fun);
        case 2
          ce_fun = cef{1};
          ce_grd = cef{2};
        otherwise
          error ("sqp: invalid equality constraint function specification");
      endswitch
    elseif (! isempty (cef))
      ce_fun = cef;   # No cell array, only constraint equality function set
      ce_grd = @ (x) fd_ce_jac (x, ce_fun);
    endif
  endif

  ci_fun = @empty_cf;
  ci_grd = @empty_jac;
  if (nargin > 3)
    ## constraint function given by user with possible gradient
    globals.cif = cif;
    ## constraint function given by user without gradient
    globals.cifcn = @empty_cf;
    if (iscell (cif))
      if (length (cif) > 0)
        globals.cifcn = cif{1};
      endif
    elseif (! isempty (cif))
      globals.cifcn = cif;
    endif

    if (nargin < 5 || (nargin > 5 && isempty (lb) && isempty (ub)))
      ## constraint inequality function only without any bounds
      ci_grd = @ (x) fd_ci_jac (x, globals.cifcn);
      if (iscell (cif))
        switch (length (cif))
          case 1
            ci_fun = cif{1};
          case 2
            ci_fun = cif{1};
            ci_grd = cif{2};
          otherwise
           error ("sqp: invalid inequality constraint function specification");
        endswitch
      elseif (! isempty (cif))
        ci_fun = cif;   # No cell array, only constraint inequality function set
      endif
    else
      ## constraint inequality function with bounds present
      lb_idx = ub_idx = true (size (x0));
      ub_grad = - (lb_grad = eye (rows (x0)));
      if (isvector (lb))
        globals.lb = tmp_lb = lb(:);
        lb_idx(:) = tmp_idx = (lb != -Inf);
        globals.lb = globals.lb(tmp_idx, 1);
        lb_grad = lb_grad(lb_idx, :);
      elseif (isempty (lb))
        if (isa (x0, "single"))
          globals.lb = tmp_lb = -realmax ("single");
        else
          globals.lb = tmp_lb = -realmax;
        endif
      else
        error ("sqp: invalid lower bound");
      endif

      if (isvector (ub))
        globals.ub = tmp_ub = ub(:);
        ub_idx(:) = tmp_idx = (ub != Inf);
        globals.ub = globals.ub(tmp_idx, 1);
        ub_grad = ub_grad(ub_idx, :);
      elseif (isempty (ub))
        if (isa (x0, "single"))
          globals.ub = tmp_ub = realmax ("single");
        else
          globals.ub = tmp_ub = realmax;
        endif
      else
        error ("sqp: invalid upper bound");
      endif

      if (any (tmp_lb > tmp_ub))
        error ("sqp: upper bound smaller than lower bound");
      endif
      bounds_grad = [lb_grad; ub_grad];
      ci_fun = @ (x) cf_ub_lb (x, lb_idx, ub_idx, globals);
      ci_grd = @ (x) cigrad_ub_lb (x, bounds_grad, globals);
    endif

  endif   # if (nargin > 3)

  iter_max = 100;
  if (nargin > 6 && ! isempty (maxiter))
    if (isscalar (maxiter) && maxiter > 0 && fix (maxiter) == maxiter)
      iter_max = maxiter;
    else
      error ("sqp: invalid number of maximum iterations");
    endif
  endif

  tol = sqrt (eps);
  if (nargin > 7 && ! isempty (tolerance))
    if (isscalar (tolerance) && tolerance > 0)
      tol = tolerance;
    else
      error ("sqp: invalid value for TOLERANCE");
    endif
  endif

  ## Initialize variables for search loop
  ## Seed x with initial guess and evaluate objective function, constraints,
  ## and gradients at initial value x0.
  ##
  ## obj_fun   -- objective function
  ## obj_grad  -- objective gradient
  ## ce_fun    -- equality constraint functions
  ## ci_fun    -- inequality constraint functions
  ## A == [grad_{x_1} cx_fun, grad_{x_2} cx_fun, ..., grad_{x_n} cx_fun]^T
  x = x0;

  obj = feval (obj_fun, x0);
  globals.nfun = 1;

  c = feval (obj_grd, x0);

  ## Choose an initial NxN symmetric positive definite Hessian approximation B.
  n = length (x0);
  if (have_hess)
    B = feval (obj_hess, x0);
  else
    B = eye (n, n);
  endif

  ce = feval (ce_fun, x0);
  F = feval (ce_grd, x0);

  ci = feval (ci_fun, x0);
  C = feval (ci_grd, x0);

  A = [F; C];

  ## Choose an initial lambda (x is provided by the caller).
  lambda = 100 * ones (rows (A), 1);

  qp_iter = 1;
  alpha = 1;

  info = 0;
  iter = 0;
  # report ();  # Called with no arguments to initialize reporting
  # report (iter, qp_iter, alpha, __sqp_nfun__, obj);

  while (++iter < iter_max)

    ## Check convergence.  This is just a simple check on the first
    ## order necessary conditions.
    nr_f = rows (F);

    lambda_e = lambda((1:nr_f)');
    lambda_i = lambda((nr_f+1:end)');

    con = [ce; ci];

    t0 = norm (c - A' * lambda);
    t1 = norm (ce);
    t2 = all (ci >= 0);
    t3 = all (lambda_i >= 0);
    t4 = norm (lambda .* con);

    if (t2 && t3 && max ([t0; t1; t4]) < tol)
      info = 101;
      break;
    endif

    ## Compute search direction p by solving QP.
    g = -ce;
    d = -ci;

    [p, obj_qp, INFO, lambda] = qp (x, B, c, F, g, [], [], d, C,
                                    Inf (size (d)));

    info = INFO.info;

    ## FIXME -- check QP solution and attempt to recover if it has
    ## failed.  For now, just warn about possible problems.
    
    id = "Octave:SQP-QP-subproblem";
    switch (info)
      case 2
        warning (id, "sqp: QP subproblem is non-convex and unbounded");
      case 3
        warning (id, "sqp: QP subproblem failed to converge in %d iterations",
                 INFO.solveiter);
      case 6
        warning (id, "sqp: QP subproblem is infeasible");
    endswitch

    ## Choose mu such that p is a descent direction for the chosen
    ## merit function phi.
    [x_new, alpha, obj_new, globals] = ...
        linesearch_L1 (x, p, obj_fun, obj_grd, ce_fun, ci_fun, lambda, ...
                       obj, globals);

    ## Evaluate objective function, constraints, and gradients at x_new.
    c_new = feval (obj_grd, x_new);

    ce_new = feval (ce_fun, x_new);
    F_new = feval (ce_grd, x_new);

    ci_new = feval (ci_fun, x_new);
    C_new = feval (ci_grd, x_new);

    A_new = [F_new; C_new];

    ## Set
    ##
    ## s = alpha * p
    ## y = grad_x L (x_new, lambda) - grad_x L (x, lambda})

    y = c_new - c;

    if (! isempty (A))
      t = ((A_new - A)'*lambda);
      y -= t;
    endif

    delx = x_new - x;

    if (norm (delx) < tol * norm (x))
      info = 101;
      break;
    endif

    if (have_hess)

      B = feval (obj_hess, x);

    else
      ## Update B using a quasi-Newton formula.
      delxt = delx';

      ## Damped BFGS.  Or maybe we would actually want to use the Hessian
      ## of the Lagrangian, computed directly?
      d1 = delxt*B*delx;

      t1 = 0.2 * d1;
      t2 = delxt*y;

      if (t2 < t1)
        theta = 0.8*d1/(d1 - t2);
      else
        theta = 1;
      endif

      r = theta*y + (1-theta)*B*delx;

      d2 = delxt*r;

      if (d1 == 0 || d2 == 0)
        info = 102;
        break;
      endif

      B = B - B*delx*delxt*B/d1 + r*r'/d2;

    endif

    x = x_new;

    obj = obj_new;

    c = c_new;

    ce = ce_new;
    F = F_new;

    ci = ci_new;
    C = C_new;

    A = A_new;

    # report (iter, qp_iter, alpha, __sqp_nfun__, obj);

  endwhile

  if (iter >= iter_max)
    info = 103;
  endif

  nf = globals.nfun;

endfunction


function [merit, obj, globals] = phi_L1 (obj, obj_fun, ce_fun, ci_fun, ...
                                         x, mu, globals)

  ce = feval (ce_fun, x);
  ci = feval (ci_fun, x);

  idx = ci < 0;

  con = [ce; ci(idx)];

  if (isempty (obj))
    obj = feval (obj_fun, x);
    globals.nfun++;
  endif

  merit = obj;
  t = norm (con, 1) / mu;

  if (! isempty (t))
    merit += t;
  endif

endfunction


function [x_new, alpha, obj, globals] = ...
      linesearch_L1 (x, p, obj_fun, obj_grd, ce_fun, ci_fun, lambda, ...
                     obj, globals)

  ## Choose parameters
  ##
  ## eta in the range (0, 0.5)
  ## tau in the range (0, 1)

  eta = 0.25;
  tau = 0.5;

  delta_bar = sqrt (eps);

  if (isempty (lambda))
    mu = 1 / delta_bar;
  else
    mu = 1 / (norm (lambda, Inf) + delta_bar);
  endif

  alpha = 1;

  c = feval (obj_grd, x);
  ce = feval (ce_fun, x);

  [phi_x_mu, obj, globals] = phi_L1 (obj, obj_fun, ce_fun, ci_fun, x, ...
                                     mu, globals);

  D_phi_x_mu = c' * p;
  d = feval (ci_fun, x);
  ## only those elements of d corresponding
  ## to violated constraints should be included.
  idx = d < 0;
  t = - norm ([ce; d(idx)], 1) / mu;
  if (! isempty (t))
    D_phi_x_mu += t;
  endif

  while (1)
    [p1, obj, globals] = phi_L1 ([], obj_fun, ce_fun, ci_fun, ...
                                 x+alpha*p, mu, globals);
    p2 = phi_x_mu+eta*alpha*D_phi_x_mu;
    if (p1 > p2)
      ## Reset alpha = tau_alpha * alpha for some tau_alpha in the
      ## range (0, tau).
      tau_alpha = 0.9 * tau;  # ??
      alpha = tau_alpha * alpha;
    else
      break;
    endif
  endwhile

  x_new = x + alpha * p;

endfunction


function grd = fdgrd (f, x)

  if (! isempty (f))
    y0 = feval (f, x);
    nx = length (x);
    grd = zeros (nx, 1);
    deltax = sqrt (eps);
    for i = 1:nx
      t = x(i);
      x(i) += deltax;
      grd(i) = (feval (f, x) - y0) / deltax;
      x(i) = t;
    endfor
  else
    grd = zeros (0, 1);
  endif

endfunction


function jac = fdjac (f, x)

  nx = length (x);
  if (! isempty (f))
    y0 = feval (f, x);
    nf = length (y0);
    nx = length (x);
    jac = zeros (nf, nx);
    deltax = sqrt (eps);
    for i = 1:nx
      t = x(i);
      x(i) += deltax;
      jac(:,i) = (feval (f, x) - y0) / deltax;
      x(i) = t;
    endfor
  else
    jac = zeros  (0, nx);
  endif

endfunction


function grd = fd_obj_grd (x, obj_fun)

  grd = fdgrd (obj_fun, x);

endfunction


function res = empty_cf (x)

  res = zeros (0, 1);

endfunction


function res = empty_jac (x)

  res = zeros (0, length (x));

endfunction


function jac = fd_ce_jac (x, ce_fun)

  jac = fdjac (ce_fun, x);

endfunction


function jac = fd_ci_jac (x, cifcn)

  ## cifcn = constraint function without gradients and lb or ub
  jac = fdjac (cifcn, x);

endfunction


function res = cf_ub_lb (x, lbidx, ubidx, globals)

  ## combine constraint function with ub and lb
  if (isempty (globals.cifcn))
    res = [x(lbidx,1)-globals.lb; globals.ub-x(ubidx,1)];
  else
    res = [feval(globals.cifcn,x); x(lbidx,1)-globals.lb;
           globals.ub-x(ubidx,1)];
  endif

endfunction


function res = cigrad_ub_lb (x, bgrad, globals)

  cigradfcn = @ (x) fd_ci_jac (x, globals.cifcn);

  if (iscell (globals.cif) && length (globals.cif) > 1)
    cigradfcn = globals.cif{2};
  endif

  if (isempty (cigradfcn))
    res = bgrad;
  else
    res = [feval(cigradfcn,x); bgrad];
  endif

endfunction

# Utility function used to debug sqp
function report (iter, qp_iter, alpha, nfun, obj)

  if (nargin == 0)
    printf ("  Itn ItQP     Step  Nfun     Objective\n");
  else
    printf ("%5d %4d %8.1g %5d %13.6e\n", iter, qp_iter, alpha, nfun, obj);
  endif

endfunction


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Test Code

%!function r = __g (x)
%!  r = [sumsq(x)-10;
%!       x(2)*x(3)-5*x(4)*x(5);
%!       x(1)^3+x(2)^3+1 ];
%!endfunction
%!
%!function obj = __phi (x)
%!  obj = exp (prod (x)) - 0.5*(x(1)^3 + x(2)^3 + 1)^2;
%!endfunction
%!
%!test
%!
%! x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];
%!
%! [x, obj, info, iter, nf, lambda] = sqp (x0, @__phi, @__g, []);
%!
%! x_opt = [-1.717143501952599;
%!           1.595709610928535;
%!           1.827245880097156;
%!          -0.763643103133572;
%!          -0.763643068453300];
%!
%! obj_opt = 0.0539498477702739;
%!
%! assert (x, x_opt, 8*sqrt (eps));
%! assert (obj, obj_opt, sqrt (eps));

%% Test input validation
%!error sqp ()
%!error sqp (1)
%!error sqp (1,2,3,4,5,6,7,8,9)
%!error sqp (1,2,3,4,5)
%!error sqp (ones (2,2))
%!error sqp (1, cell (4,1))
%!error sqp (1, cell (3,1), cell (3,1))
%!error sqp (1, cell (3,1), cell (2,1), cell (3,1))
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1), ones (2,2),[])
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[], ones (2,2))
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),1,-1)
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[], ones (2,2))
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],-1)
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],1.5)
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],[], ones (2,2))
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],[],-1)