File: polyfit.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (210 lines) | stat: -rw-r--r-- 6,428 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
## Copyright (C) 1996-2013 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{p} =} polyfit (@var{x}, @var{y}, @var{n})
## @deftypefnx {Function File} {[@var{p}, @var{s}] =} polyfit (@var{x}, @var{y}, @var{n})
## @deftypefnx {Function File} {[@var{p}, @var{s}, @var{mu}] =} polyfit (@var{x}, @var{y}, @var{n})
## Return the coefficients of a polynomial @var{p}(@var{x}) of degree
## @var{n} that minimizes the least-squares-error of the fit to the points
## @code{[@var{x}, @var{y}]}.  If @var{n} is a logical vector, it is used
## as a mask to selectively force the corresponding polynomial
## coefficients to be used or ignored.
##
## The polynomial coefficients are returned in a row vector.
##
## The optional output @var{s} is a structure containing the following fields:
##
## @table @samp
## @item R
## Triangular factor R from the QR@tie{}decomposition.
##
## @item X
## The Vandermonde matrix used to compute the polynomial coefficients.
##
## @item C
## The unscaled covariance matrix, formally equal to the inverse of
## @var{x'}*@var{x}, but computed in a way minimizing roundoff error
## propagation.
## 
## @item df
## The degrees of freedom.
##
## @item normr
## The norm of the residuals.
##
## @item yf
## The values of the polynomial for each value of @var{x}.
## @end table
##
## The second output may be used by @code{polyval} to calculate the
## statistical error limits of the predicted values.  In particular, the
## standard deviation of @var{p} coefficients is given by @*
## @code{sqrt (diag (s.C)/s.df)*s.normr}.
##
## When the third output, @var{mu}, is present the
## coefficients, @var{p}, are associated with a polynomial in
## @var{xhat} = (@var{x}-@var{mu}(1))/@var{mu}(2).
## Where @var{mu}(1) = mean (@var{x}), and @var{mu}(2) = std (@var{x}).
## This linear transformation of @var{x} improves the numerical
## stability of the fit.
## @seealso{polyval, polyaffine, roots, vander, zscore}
## @end deftypefn

## Author: KH <Kurt.Hornik@wu-wien.ac.at>
## Created: 13 December 1994
## Adapted-By: jwe
## Modified on 20120204 by P. Dupuis; added the ability to specify a
## polynomial mask instead of a polynomial degree.

function [p, s, mu] = polyfit (x, y, n)

  if (nargin < 3 || nargin > 4)
    print_usage ();
  endif

  if (nargout > 2)
    ## Normalized the x values.
    mu = [mean(x), std(x)];
    x = (x - mu(1)) / mu(2);
  endif

  if (! size_equal (x, y))
    error ("polyfit: X and Y must be vectors of the same size");
  endif

  if (islogical (n))
    polymask = n;
    ## n is the polynomial degree as given the polymask size; m is the
    ## effective number of used coefficients.
    n = length (polymask) - 1; m = sum (polymask) - 1;
  else
    if (! (isscalar (n) && n >= 0 && ! isinf (n) && n == fix (n)))
      error ("polyfit: N must be a non-negative integer");
    endif
    polymask = logical (ones (1, n+1)); m = n;
  endif

  y_is_row_vector = (rows (y) == 1);

  ## Reshape x & y into column vectors.
  l = numel (x);
  x = x(:);
  y = y(:);

  ## Construct the Vandermonde matrix.
  v = vander (x, n+1);

  ## Solve by QR decomposition.
  [q, r, k] = qr (v(:, polymask), 0);
  p = r \ (q' * y);
  p(k) = p;
  
  if (n != m)
    q = p; p = zeros (n+1, 1); 
    p(polymask) = q;
  endif
  
  if (nargout > 1)
    yf = v*p;

    if (y_is_row_vector)
      s.yf = yf.';
    else
      s.yf = yf;
    endif
    s.X = v; 

    ## r.'*r is positive definite if X(:, polymask) is of full rank.
    ## Invert it by cholinv to avoid taking the square root of squared
    ## quantities. If cholinv fails, then X(:, polymask) is rank
    ## deficient and not invertible.
    try
      C = cholinv (r.'*r)(k, k);
    catch
      C = NaN (m+1, m+1);
    end_try_catch

    if (n != m)
      ## fill matrices if required
      s.X(:, !polymask) = 0;
      s.R = zeros (n+1, n+1); s.R(polymask, polymask) = r;
      s.C = zeros (n+1, n+1); s.C(polymask, polymask) = C;
    else
      s.R = r; 
      s.C = C;
    endif
    s.df = l - m - 1;
    s.normr = norm (yf - y);
  endif

  ## Return a row vector.
  p = p.';

endfunction


%!shared x
%! x = [-2, -1, 0, 1, 2];
%!assert (polyfit (x, x.^2+x+1, 2), [1, 1, 1], sqrt (eps))
%!assert (polyfit (x, x.^2+x+1, 3), [0, 1, 1, 1], sqrt (eps))
%!fail ("polyfit (x, x.^2+x+1)")
%!fail ("polyfit (x, x.^2+x+1, [])")

## Test difficult case where scaling is really needed. This example
## demonstrates the rather poor result which occurs when the dependent
## variable is not normalized properly.
## Also check the usage of 2nd & 3rd output arguments.
%!test
%! x = [ -1196.4, -1195.2, -1194, -1192.8, -1191.6, -1190.4, -1189.2, -1188, ...
%!       -1186.8, -1185.6, -1184.4, -1183.2, -1182];
%! y = [ 315571.7086, 315575.9618, 315579.4195, 315582.6206, 315585.4966, ...
%!       315588.3172, 315590.9326, 315593.5934, 315596.0455, 315598.4201, ...
%!       315600.7143, 315602.9508, 315605.1765 ];
%! [p1, s1] = polyfit (x, y, 10);
%! [p2, s2, mu] = polyfit (x, y, 10);
%! assert (s2.normr < s1.normr);

%!test
%! x = 1:4;
%! p0 = [1i, 0, 2i, 4];
%! y0 = polyval (p0, x);
%! p = polyfit (x, y0, numel (p0) - 1);
%! assert (p, p0, 1000*eps);

%!test
%! x = 1000 + (-5:5);
%! xn = (x - mean (x)) / std (x);
%! pn = ones (1,5);
%! y = polyval (pn, xn);
%! [p, s, mu] = polyfit (x, y, numel (pn) - 1);
%! [p2, s2] = polyfit (x, y, numel (pn) - 1);
%! assert (p, pn, s.normr);
%! assert (s.yf, y, s.normr);
%! assert (mu, [mean(x), std(x)]);
%! assert (s.normr/s2.normr < sqrt (eps));

%!test
%! x = [1, 2, 3; 4, 5, 6];
%! y = [0, 0, 1; 1, 0, 0];
%! p = polyfit (x, y, 5);
%! expected = [0, 1, -14, 65, -112, 60] / 12;
%! assert (p, expected, sqrt (eps));

%!error <vectors of the same size> polyfit ([1, 2; 3, 4], [1, 2, 3, 4], 2)