1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
## Copyright (C) 1994-2013 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{y} =} polyval (@var{p}, @var{x})
## @deftypefnx {Function File} {@var{y} =} polyval (@var{p}, @var{x}, [], @var{mu})
## @deftypefnx {Function File} {[@var{y}, @var{dy}] =} polyval (@var{p}, @var{x}, @var{s})
## @deftypefnx {Function File} {[@var{y}, @var{dy}] =} polyval (@var{p}, @var{x}, @var{s}, @var{mu})
##
## Evaluate the polynomial @var{p} at the specified values of @var{x}. When
## @var{mu} is present, evaluate the polynomial for
## (@var{x}-@var{mu}(1))/@var{mu}(2).
## If @var{x} is a vector or matrix, the polynomial is evaluated for each of
## the elements of @var{x}.
##
## In addition to evaluating the polynomial, the second output
## represents the prediction interval, @var{y} +/- @var{dy}, which
## contains at least 50% of the future predictions. To calculate the
## prediction interval, the structured variable @var{s}, originating
## from @code{polyfit}, must be supplied.
##
## @seealso{polyvalm, polyaffine, polyfit, roots, poly}
## @end deftypefn
## Author: Tony Richardson <arichard@stark.cc.oh.us>
## Created: June 1994
## Adapted-By: jwe
function [y, dy] = polyval (p, x, s = [], mu)
if (nargin < 2 || nargin > 4 || (nargout == 2 && nargin < 3))
print_usage ();
endif
if (isempty (x))
y = [];
return;
elseif (isempty (p))
y = zeros (size (x));
return;
elseif (! isvector (p))
error ("polyval: first argument must be a vector");
endif
if (nargin > 3)
x = (x - mu(1)) / mu(2);
endif
n = length (p) - 1;
y = p(1) * ones (size (x));
for i = 2:n+1
y = y .* x + p(i);
endfor
if (nargout == 2)
## Note: the F-Distribution is generally considered to be single-sided.
## http://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm
## t = finv (1-alpha, s.df, s.df);
## dy = t * sqrt (1 + sumsq (A/s.R, 2)) * s.normr / sqrt (s.df)
## If my inference is correct, then t must equal 1 for polyval.
## This is because finv (0.5, n, n) = 1.0 for any n.
try
k = numel (x);
A = (x(:) * ones (1, n+1)) .^ (ones (k, 1) * (n:-1:0));
dy = sqrt (1 + sumsq (A/s.R, 2)) * s.normr / sqrt (s.df);
dy = reshape (dy, size (x));
catch
if (isempty (s))
error ("polyval: third input is required.");
elseif (isstruct (s)
&& all (ismember ({"R", "normr", "df"}, fieldnames (s))))
error (lasterr ());
elseif (isstruct (s))
error ("polyval: third input is missing the required fields.");
else
error ("polyval: third input is not a structure.");
endif
end_try_catch
endif
endfunction
%!fail ("polyval ([1,0;0,1],0:10)")
%!test
%! r = 0:10:50;
%! p = poly (r);
%! p = p / max (abs (p));
%! x = linspace (0,50,11);
%! y = polyval (p,x) + 0.25*sin (100*x);
%! [pf, s] = polyfit (x, y, numel (r));
%! [y1, delta] = polyval (pf, x, s);
%! expected = [0.37235, 0.35854, 0.32231, 0.32448, 0.31328, ...
%! 0.32036, 0.31328, 0.32448, 0.32231, 0.35854, 0.37235];
%! assert (delta, expected, 0.00001);
%!test
%! x = 10 + (-2:2);
%! y = [0, 0, 1, 0, 2];
%! p = polyfit (x, y, numel (x) - 1);
%! [pn, s, mu] = polyfit (x, y, numel (x) - 1);
%! y1 = polyval (p, x);
%! yn = polyval (pn, x, [], mu);
%! assert (y1, y, sqrt (eps));
%! assert (yn, y, sqrt (eps));
%!test
%! p = [0, 1, 0];
%! x = 1:10;
%! assert (x, polyval (p,x), eps);
%! x = x(:);
%! assert (x, polyval (p,x), eps);
%! x = reshape (x, [2, 5]);
%! assert (x, polyval (p,x), eps);
%! x = reshape (x, [5, 2]);
%! assert (x, polyval (p,x), eps);
%! x = reshape (x, [1, 1, 5, 2]);
%! assert (x, polyval (p,x), eps);
%!test
%! p = [1];
%! x = 1:10;
%! y = ones (size (x));
%! assert (y, polyval (p,x), eps);
%! x = x(:);
%! y = ones (size (x));
%! assert (y, polyval (p,x), eps);
%! x = reshape (x, [2, 5]);
%! y = ones (size (x));
%! assert (y, polyval (p,x), eps);
%! x = reshape (x, [5, 2]);
%! y = ones (size (x));
%! assert (y, polyval (p,x), eps);
%! x = reshape (x, [1, 1, 5, 2]);
%!assert (zeros (1, 10), polyval ([], 1:10))
%!assert ([], polyval (1, []))
%!assert ([], polyval ([], []))
|