File: ppder.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (74 lines) | stat: -rw-r--r-- 2,149 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
## Copyright (C) 2008-2013 VZLU Prague, a.s., Czech Republic
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {ppd =} ppder (pp)
## @deftypefnx {Function File} {ppd =} ppder (pp, m)
## Compute the piecewise @var{m}-th derivative of a piecewise polynomial
## struct @var{pp}.  If @var{m} is omitted the first derivative is calculated.
## @seealso{mkpp, ppval, ppint}
## @end deftypefn

function ppd = ppder (pp, m)

  if ((nargin < 1) || (nargin > 2))
    print_usage ();
  elseif (nargin == 1)
    m = 1;
  endif

  if (! (isstruct (pp) && strcmp (pp.form, "pp")))
    error ("ppder: PP must be a structure");
  endif

  [x, p, n, k, d] = unmkpp (pp);

  if (k - m <= 0)
    x = [x(1) x(end)];
    pd = zeros (prod (d), 1);
  else
    f = k : -1 : 1;
    ff = bincoeff (f, m + 1) .* factorial (m + 1) ./ f;
    k -= m;
    pd = p(:,1:k) * diag (ff(1:k));
  endif

  ppd = mkpp (x, pd, d);
endfunction


%!shared x,y,pp,ppd
%! x = 0:8;
%! y = [x.^2; x.^3+1];
%! pp = spline (x, y);
%! ppd = ppder (pp);
%!assert (ppval (ppd, x), [2*x; 3*x.^2], 1e-14)
%!assert (ppd.order, 3)
%! ppd = ppder (pp, 2);
%!assert (ppval (ppd, x), [2*ones(size (x)); 6*x], 1e-14)
%!assert (ppd.order, 2)
%! ppd = ppder (pp, 3);
%!assert (ppd.order, 1)
%!assert (ppd.pieces, 8)
%!assert (size (ppd.coefs), [16, 1])
%! ppd = ppder (pp, 4);
%!assert (ppd.order, 1)
%!assert (ppd.pieces, 1)
%!assert (size (ppd.coefs), [2, 1])
%!assert (ppval (ppd,x), zeros (size (y)), 1e-14)