1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
## Copyright (C) 1995-2013 Friedrich Leisch
## Copyright (C) 2010 Alois Schloegl
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[Pxx, @var{w}] =} periodogram (@var{x})
## For a data matrix @var{x} from a sample of size @var{n}, return the
## periodogram. The angular frequency is returned in @var{w}.
##
## [Pxx,w] = periodogram (@var{x}).
##
## [Pxx,w] = periodogram (@var{x},win).
##
## [Pxx,w] = periodogram (@var{x},win,nfft).
##
## [Pxx,f] = periodogram (@var{x},win,nfft,Fs).
##
## [Pxx,f] = periodogram (@var{x},win,nfft,Fs,"range").
##
## @itemize
## @item x: data; if real-valued a one-sided spectrum is estimated,
## if complex-valued or range indicates @qcode{"@nospell{twosided}"}, the full
## spectrum is estimated.
##
## @item win: weight data with window, x.*win is used for further computation,
## if window is empty, a rectangular window is used.
##
## @item nfft: number of frequency bins, default max (256, 2.^ceil (log2 (length (x)))).
##
## @item Fs: sampling rate, default 1.
##
## @item range: @qcode{"@nospell{onesided}"} computes spectrum from [0..nfft/2+1].
## @qcode{"@nospell{twosided}"} computes spectrum from [0..nfft-1]. These
## strings can appear at any position in the list input arguments after
## window.
##
## @item @nospell{Pxx}: one-, or two-sided power spectrum.
##
## @item w: angular frequency [0..2*pi) (two-sided) or [0..pi] one-sided.
##
## @item f: frequency [0..Fs) (two-sided) or [0..Fs/2] one-sided.
## @end itemize
## @end deftypefn
## Author: FL <Friedrich.Leisch@ci.tuwien.ac.at>
## Description: Compute the periodogram
function [pxx, f] = periodogram (x, varargin)
## check input arguments
if (nargin < 1 || nargin > 5)
print_usage ();
endif
nfft = []; fs = []; range = []; window = [];
j = 1;
for k = 1:length (varargin)
if (ischar (varargin{k}))
range = varargin{k};
else
switch (j)
case 1
window = varargin{k};
case 2
nfft = varargin{k};
case 3
fs = varargin{k};
case 4
range = varargin{k};
endswitch
j++;
endif
endfor
[r, c] = size (x);
if (r == 1)
r = c;
endif
if (ischar (window))
range = window;
window = [];
endif;
if (ischar (nfft))
range = nfft;
nfft = [];
endif;
if (ischar (fs))
range = fs;
fs = [];
endif;
if (! isempty (window))
if (all (size (x) == size (window)))
x .*= window;
elseif (rows (x) == rows (window) && columns (window) == 1)
x .*= window (:,ones (1,c));
endif;
endif
if (numel (nfft)>1)
error ("nfft must be scalar");
endif
if (isempty (nfft))
nfft = max (256, 2.^ceil (log2 (r)));
endif
if (strcmp (range, "onesided"))
range = 1;
elseif (strcmp (range, "twosided"))
range = 2;
else
range = 2-isreal (x);
endif
## compute periodogram
if (r>nfft)
Pxx = 0;
rr = rem (length (x), nfft);
if (rr)
x = [x(:); (zeros (nfft-rr, 1))];
endif
x = sum (reshape (x, nfft, []), 2);
endif
if (isempty (window))
n = r;
else
n = sumsq (window);
end;
Pxx = (abs (fft (x, nfft))) .^ 2 / n ;
if (nargin<4)
Pxx /= 2*pi;
elseif (! isempty (fs))
Pxx /= fs;
endif
## generate output arguments
if (range == 1) # onesided
Pxx = Pxx(1:nfft/2+1) + [0; Pxx(end:-1:(nfft/2+2)); 0];
endif
if (nargout != 1)
if (range == 1)
f = (0:nfft/2)'/nfft;
elseif (range == 2)
f = (0:nfft-1)'/nfft;
endif
if (nargin<4)
f *= 2*pi; # generate w=2*pi*f
elseif (! isempty (fs))
f *= fs;
endif
endif
if (nargout == 0)
if (nargin<4)
plot (f/(2*pi), 10*log10 (Pxx));
xlabel ("normalized frequency [x pi rad]");
ylabel ("Power density [dB/rad/sample]");
else
plot (f, 10*log10 (Pxx));
xlabel ("frequency [Hz]");
ylabel ("Power density [dB/Hz]");
endif
grid on;
title ("Periodogram Power Spectral Density Estimate");
else
pxx = Pxx;
endif
endfunction
|