1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
## Copyright (C) 2000-2013 Bill Lash
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{b} =} unwrap (@var{x})
## @deftypefnx {Function File} {@var{b} =} unwrap (@var{x}, @var{tol})
## @deftypefnx {Function File} {@var{b} =} unwrap (@var{x}, @var{tol}, @var{dim})
##
## Unwrap radian phases by adding multiples of 2*pi as appropriate to
## remove jumps greater than @var{tol}. @var{tol} defaults to pi.
##
## Unwrap will work along the dimension @var{dim}. If @var{dim}
## is unspecified it defaults to the first non-singleton dimension.
## @end deftypefn
## Author: Bill Lash <lash@tellabs.com>
function retval = unwrap (x, tol, dim)
if (nargin < 1 || nargin > 3)
print_usage ();
endif
if (!isnumeric (x))
error ("unwrap: X must be a numeric matrix or vector");
endif
if (nargin < 2 || isempty (tol))
tol = pi;
endif
## Don't let anyone use a negative value for TOL.
tol = abs (tol);
nd = ndims (x);
sz = size (x);
if (nargin == 3)
if (!(isscalar (dim) && dim == fix (dim))
|| !(1 <= dim && dim <= nd))
error ("unwrap: DIM must be an integer and a valid dimension");
endif
else
## Find the first non-singleton dimension.
(dim = find (sz > 1, 1)) || (dim = 1);
endif
rng = 2*pi;
m = sz(dim);
## Handle case where we are trying to unwrap a scalar, or only have
## one sample in the specified dimension.
if (m == 1)
retval = x;
return;
endif
## Take first order difference to see so that wraps will show up
## as large values, and the sign will show direction.
idx = repmat ({':'}, nd, 1);
idx{dim} = [1,1:m-1];
d = x(idx{:}) - x;
## Find only the peaks, and multiply them by the appropriate amount
## of ranges so that there are kronecker deltas at each wrap point
## multiplied by the appropriate amount of range values.
p = ceil (abs (d)./rng) .* rng .* (((d > tol) > 0) - ((d < -tol) > 0));
## Now need to "integrate" this so that the deltas become steps.
r = cumsum (p, dim);
## Now add the "steps" to the original data and put output in the
## same shape as originally.
retval = x + r;
endfunction
%!function t = __xassert (a,b,tol)
%! if (nargin == 1)
%! t = all (a(:));
%! else
%! if (nargin == 2)
%! tol = 0;
%! endif
%! if (any (size (a) != size (b)))
%! t = 0;
%! elseif (any (abs (a(:) - b(:)) > tol))
%! t = 0;
%! else
%! t = 1;
%! endif
%! endif
%!endfunction
%!
%!test
%!
%! i = 0;
%! t = [];
%!
%! r = [0:100]; # original vector
%! w = r - 2*pi*floor ((r+pi)/(2*pi)); # wrapped into [-pi,pi]
%! tol = 1e3*eps; # maximum expected deviation
%!
%! t(++i) = __xassert (r, unwrap (w), tol); #unwrap single row
%! t(++i) = __xassert (r', unwrap (w'), tol); #unwrap single column
%! t(++i) = __xassert ([r',r'], unwrap ([w',w']), tol); #unwrap 2 columns
%! t(++i) = __xassert ([r;r], unwrap ([w;w],[],2), tol); #check that dim works
%! t(++i) = __xassert (r+10, unwrap (10+w), tol); #check r(1)>pi works
%!
%! t(++i) = __xassert (w', unwrap (w',[],2)); #unwrap col by rows should not change it
%! t(++i) = __xassert (w, unwrap (w,[],1)); #unwrap row by cols should not change it
%! t(++i) = __xassert ([w;w], unwrap ([w;w])); #unwrap 2 rows by cols should not change them
%!
%! ## verify that setting tolerance too low will cause bad results.
%! t(++i) = __xassert (any (abs (r - unwrap (w,0.8)) > 100));
%!
%! assert (all (t));
%!
%!test
%! A = [pi*(-4), pi*(-2+1/6), pi/4, pi*(2+1/3), pi*(4+1/2), pi*(8+2/3), pi*(16+1), pi*(32+3/2), pi*64];
%! assert (unwrap (A), unwrap (A, pi));
%! assert (unwrap (A, pi), unwrap (A, pi, 2));
%! assert (unwrap (A', pi), unwrap (A', pi, 1));
%!
%!test
%! A = [pi*(-4); pi*(2+1/3); pi*(16+1)];
%! B = [pi*(-2+1/6); pi*(4+1/2); pi*(32+3/2)];
%! C = [pi/4; pi*(8+2/3); pi*64];
%! D = [pi*(-2+1/6); pi*(2+1/3); pi*(8+2/3)];
%! E(:, :, 1) = [A, B, C, D];
%! E(:, :, 2) = [A+B, B+C, C+D, D+A];
%! F(:, :, 1) = [unwrap(A), unwrap(B), unwrap(C), unwrap(D)];
%! F(:, :, 2) = [unwrap(A+B), unwrap(B+C), unwrap(C+D), unwrap(D+A)];
%! assert (unwrap (E), F);
%!
%!test
%! A = [0, 2*pi, 4*pi, 8*pi, 16*pi, 65536*pi];
%! B = [pi*(-2+1/6), pi/4, pi*(2+1/3), pi*(4+1/2), pi*(8+2/3), pi*(16+1), pi*(32+3/2), pi*64];
%! assert (unwrap (A), zeros (1, length (A)));
%! assert (diff (unwrap (B), 1) < 2*pi, true (1, length (B)-1));
%!error unwrap()
|