File: unwrap.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (158 lines) | stat: -rw-r--r-- 5,130 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
## Copyright (C) 2000-2013 Bill Lash
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{b} =} unwrap (@var{x})
## @deftypefnx {Function File} {@var{b} =} unwrap (@var{x}, @var{tol})
## @deftypefnx {Function File} {@var{b} =} unwrap (@var{x}, @var{tol}, @var{dim})
##
## Unwrap radian phases by adding multiples of 2*pi as appropriate to
## remove jumps greater than @var{tol}.  @var{tol} defaults to pi.
##
## Unwrap will work along the dimension @var{dim}.  If @var{dim}
## is unspecified it defaults to the first non-singleton dimension.
## @end deftypefn

## Author: Bill Lash <lash@tellabs.com>

function retval = unwrap (x, tol, dim)

  if (nargin < 1 || nargin > 3)
    print_usage ();
  endif

  if (!isnumeric (x))
    error ("unwrap: X must be a numeric matrix or vector");
  endif

  if (nargin < 2 || isempty (tol))
    tol = pi;
  endif

  ## Don't let anyone use a negative value for TOL.
  tol = abs (tol);

  nd = ndims (x);
  sz = size (x);
  if (nargin == 3)
    if (!(isscalar (dim) && dim == fix (dim))
        || !(1 <= dim && dim <= nd))
      error ("unwrap: DIM must be an integer and a valid dimension");
    endif
  else
    ## Find the first non-singleton dimension.
    (dim = find (sz > 1, 1)) || (dim = 1);
  endif

  rng = 2*pi;
  m = sz(dim);

  ## Handle case where we are trying to unwrap a scalar, or only have
  ## one sample in the specified dimension.
  if (m == 1)
    retval = x;
    return;
  endif

  ## Take first order difference to see so that wraps will show up
  ## as large values, and the sign will show direction.
  idx = repmat ({':'}, nd, 1);
  idx{dim} = [1,1:m-1];
  d = x(idx{:}) - x;

  ## Find only the peaks, and multiply them by the appropriate amount
  ## of ranges so that there are kronecker deltas at each wrap point
  ## multiplied by the appropriate amount of range values.
  p =  ceil (abs (d)./rng) .* rng .* (((d > tol) > 0) - ((d < -tol) > 0));

  ## Now need to "integrate" this so that the deltas become steps.
  r = cumsum (p, dim);

  ## Now add the "steps" to the original data and put output in the
  ## same shape as originally.
  retval = x + r;

endfunction


%!function t = __xassert (a,b,tol)
%!  if (nargin == 1)
%!    t = all (a(:));
%!  else
%!    if (nargin == 2)
%!      tol = 0;
%!    endif
%!    if (any (size (a) != size (b)))
%!      t = 0;
%!    elseif (any (abs (a(:) - b(:)) > tol))
%!      t = 0;
%!    else
%!      t = 1;
%!    endif
%!  endif
%!endfunction
%!
%!test
%!
%! i = 0;
%! t = [];
%!
%! r = [0:100];                        # original vector
%! w = r - 2*pi*floor ((r+pi)/(2*pi)); # wrapped into [-pi,pi]
%! tol = 1e3*eps;                      # maximum expected deviation
%!
%! t(++i) = __xassert (r, unwrap (w), tol);              #unwrap single row
%! t(++i) = __xassert (r', unwrap (w'), tol);            #unwrap single column
%! t(++i) = __xassert ([r',r'], unwrap ([w',w']), tol);  #unwrap 2 columns
%! t(++i) = __xassert ([r;r], unwrap ([w;w],[],2), tol); #check that dim works
%! t(++i) = __xassert (r+10, unwrap (10+w), tol);        #check r(1)>pi works
%!
%! t(++i) = __xassert (w', unwrap (w',[],2));  #unwrap col by rows should not change it
%! t(++i) = __xassert (w, unwrap (w,[],1));    #unwrap row by cols should not change it
%! t(++i) = __xassert ([w;w], unwrap ([w;w])); #unwrap 2 rows by cols should not change them
%!
%! ## verify that setting tolerance too low will cause bad results.
%! t(++i) = __xassert (any (abs (r - unwrap (w,0.8)) > 100));
%!
%! assert (all (t));
%!
%!test
%! A = [pi*(-4), pi*(-2+1/6), pi/4, pi*(2+1/3), pi*(4+1/2), pi*(8+2/3), pi*(16+1), pi*(32+3/2), pi*64];
%! assert (unwrap (A), unwrap (A, pi));
%! assert (unwrap (A, pi), unwrap (A, pi, 2));
%! assert (unwrap (A', pi), unwrap (A', pi, 1));
%!
%!test
%! A = [pi*(-4); pi*(2+1/3); pi*(16+1)];
%! B = [pi*(-2+1/6); pi*(4+1/2); pi*(32+3/2)];
%! C = [pi/4; pi*(8+2/3); pi*64];
%! D = [pi*(-2+1/6); pi*(2+1/3); pi*(8+2/3)];
%! E(:, :, 1) = [A, B, C, D];
%! E(:, :, 2) = [A+B, B+C, C+D, D+A];
%! F(:, :, 1) = [unwrap(A), unwrap(B), unwrap(C), unwrap(D)];
%! F(:, :, 2) = [unwrap(A+B), unwrap(B+C), unwrap(C+D), unwrap(D+A)];
%! assert (unwrap (E), F);
%!
%!test
%! A = [0, 2*pi, 4*pi, 8*pi, 16*pi, 65536*pi];
%! B = [pi*(-2+1/6), pi/4, pi*(2+1/3), pi*(4+1/2), pi*(8+2/3), pi*(16+1), pi*(32+3/2), pi*64];
%! assert (unwrap (A), zeros (1, length (A)));
%! assert (diff (unwrap (B), 1) < 2*pi, true (1, length (B)-1));

%!error unwrap()