1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
## Copyright (C) 2008-2013 Radek Salac
## Copyright (C) 2012 Carlo de Falco
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{x} =} bicgstab (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0})
## @deftypefnx {Function File} {@var{x} =} bicgstab (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{P})
## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} bicgstab (@var{A}, @var{b}, @dots{})
## Solve @code{A x = b} using the stabilizied Bi-conjugate gradient iterative
## method.
##
## @itemize @minus
## @item @var{rtol} is the relative tolerance, if not given or set to
## [] the default value 1e-6 is used.
##
## @item @var{maxit} the maximum number of outer iterations, if not
## given or set to [] the default value @code{min (20, numel (b))} is
## used.
##
## @item @var{x0} the initial guess, if not given or set to [] the
## default value @code{zeros (size (b))} is used.
## @end itemize
##
## @var{A} can be passed as a matrix or as a function handle or
## inline function @code{f} such that @code{f(x) = A*x}.
##
## The preconditioner @var{P} is given as @code{P = M1 * M2}.
## Both @var{M1} and @var{M2} can be passed as a matrix or as a function
## handle or inline function @code{g} such that @code{g(x) = M1 \ x} or
## @code{g(x) = M2 \ x}.
##
## If called with more than one output parameter
##
## @itemize @minus
## @item @var{flag} indicates the exit status:
##
## @itemize @minus
## @item 0: iteration converged to the within the chosen tolerance
##
## @item 1: the maximum number of iterations was reached before convergence
##
## @item 3: the algorithm reached stagnation
## @end itemize
##
## (the value 2 is unused but skipped for compatibility).
##
## @item @var{relres} is the final value of the relative residual.
##
## @item @var{iter} is the number of iterations performed.
##
## @item @var{resvec} is a vector containing the relative residual at each iteration.
## @end itemize
##
## @seealso{bicg, cgs, gmres, pcg}
##
## @end deftypefn
function [x, flag, relres, iter, resvec] = bicgstab (A, b, tol, maxit,
M1, M2, x0)
if (nargin >= 2 && nargin <= 7 && isvector (full (b)))
if (ischar (A))
A = str2func (A);
elseif (ismatrix (A))
Ax = @(x) A * x;
elseif (isa (A, "function_handle"))
Ax = @(x) feval (A, x);
else
error (["bicgstab: first argument is expected " ...
"to be a function or a square matrix"]);
endif
if (nargin < 3 || isempty (tol))
tol = 1e-6;
endif
if (nargin < 4 || isempty (maxit))
maxit = min (rows (b), 20);
endif
if (nargin < 5 || isempty (M1))
M1m1x = @(x) x;
elseif (ischar (M1))
M1m1x = str2func (M1);
elseif (ismatrix (M1))
M1m1x = @(x) M1 \ x;
elseif (isa (M1, "function_handle"))
M1m1x = @(x) feval (M1, x);
else
error (["bicgstab: preconditioner is " ...
"expected to be a function or matrix"]);
endif
if (nargin < 6 || isempty (M2))
M2m1x = @(x) x;
elseif (ischar (M2))
M2m1x = str2func (M2);
elseif (ismatrix (M2))
M2m1x = @(x) M2 \ x;
elseif (isa (M2, "function_handle"))
M2m1x = @(x) feval (M2, x);
else
error (["bicgstab: preconditioner is "...
"expected to be a function or matrix"]);
endif
precon = @(x) M2m1x (M1m1x (x));
if (nargin < 7 || isempty (x0))
x0 = zeros (size (b));
endif
## specifies initial estimate x0
if (nargin < 7)
x = zeros (rows (b), 1);
else
x = x0;
endif
norm_b = norm (b);
res = b - Ax (x);
rr = res;
## Vector of the residual norms for each iteration.
resvec = norm (res) / norm_b;
## Default behaviour we don't reach tolerance tol within maxit iterations.
flag = 1;
for iter = 1:maxit
rho_1 = rr' * res;
if (iter == 1)
p = res;
else
beta = (rho_1 / rho_2) * (alpha / omega);
p = res + beta * (p - omega * v);
endif
phat = precon (p);
v = Ax (phat);
alpha = rho_1 / (rr' * v);
s = res - alpha * v;
shat = precon (s);
t = Ax (shat);
omega = (s' * t) / (t' * t);
x = x + alpha * phat + omega * shat;
res = s - omega * t;
rho_2 = rho_1;
relres = norm (res) / norm_b;
resvec = [resvec; relres];
if (relres <= tol)
## We reach tolerance tol within maxit iterations.
flag = 0;
break;
elseif (resvec(end) == resvec(end - 1))
## The method stagnates.
flag = 3;
break;
endif
endfor
if (nargout < 2)
if (flag == 0)
printf ("bicgstab converged at iteration %i ", iter);
printf ("to a solution with relative residual %e\n", relres);
elseif (flag == 3)
printf ("bicgstab stopped at iteration %i ", iter);
printf ("without converging to the desired tolerance %e\n", tol);
printf ("because the method stagnated.\n");
printf ("The iterate returned (number %i) ", iter);
printf ("has relative residual %e\n", relres);
else
printf ("bicgstab stopped at iteration %i ", iter);
printf ("without converging to the desired toleranc %e\n", tol);
printf ("because the maximum number of iterations was reached.\n");
printf ("The iterate returned (number %i) ", iter);
printf ("has relative residual %e\n", relres);
endif
endif
else
print_usage ();
endif
endfunction
%!demo
%! % Solve system of A*x=b
%! A = [5 -1 3;-1 2 -2;3 -2 3];
%! b = [7;-1;4];
%! [x, flag, relres, iter, resvec] = bicgstab (A, b)
%!shared A, b, n, M1, M2
%!
%!test
%! n = 100;
%! A = spdiags ([-2*ones(n,1) 4*ones(n,1) -ones(n,1)], -1:1, n, n);
%! b = sum (A, 2);
%! tol = 1e-8;
%! maxit = 15;
%! M1 = spdiags ([ones(n,1)/(-2) ones(n,1)],-1:0, n, n);
%! M2 = spdiags ([4*ones(n,1) -ones(n,1)], 0:1, n, n);
%! [x, flag, relres, iter, resvec] = bicgstab (A, b, tol, maxit, M1, M2);
%! assert (x, ones (size (b)), 1e-7);
%!
%!test
%!function y = afun (x, a)
%! y = a * x;
%!endfunction
%!
%! tol = 1e-8;
%! maxit = 15;
%!
%! [x, flag, relres, iter, resvec] = bicgstab (@(x) afun (x, A), b,
%! tol, maxit, M1, M2);
%! assert (x, ones (size (b)), 1e-7);
%!test
%! n = 100;
%! tol = 1e-8;
%! a = sprand (n, n, .1);
%! A = a'*a + 100 * eye (n);
%! b = sum (A, 2);
%! [x, flag, relres, iter, resvec] = bicgstab (A, b, tol, [], diag (diag (A)));
%! assert (x, ones (size (b)), 1e-7);
%!test
%! A = [1 + 1i, 1 + 1i; 2 - 1i, 2 + 1i];
%! b = A * [1; 1];
%! [x, flag, relres, iter, resvec] = bicgstab (A, b);
%! assert (x, [1; 1], 1e-6);
|