1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
|
## Copyright (C) 2004-2013 Piotr Krzyzanowski
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{x} =} pcg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{m1}, @var{m2}, @var{x0}, @dots{})
## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}, @var{eigest}] =} pcg (@dots{})
##
## Solve the linear system of equations @w{@code{@var{A} * @var{x} = @var{b}}}
## by means of the Preconditioned Conjugate Gradient iterative method. The
## input arguments are
##
## @itemize
## @item
## @var{A} can be either a square (preferably sparse) matrix or a function
## handle, inline function or string containing the name of a function which
## computes @w{@code{@var{A} * @var{x}}}. In principle, @var{A} should be
## symmetric and positive definite; if @code{pcg} finds @var{A} not to be
## positive definite, a warning is printed and the @var{flag} output will be
## set.
##
## @item
## @var{b} is the right-hand side vector.
##
## @item
## @var{tol} is the required relative tolerance for the residual error,
## @w{@code{@var{b} - @var{A} * @var{x}}}. The iteration stops if
## @w{@code{norm (@var{b} - @var{A} * @var{x})} @leq{}
## @w{@var{tol} * norm (@var{b})}}.
## If @var{tol} is omitted or empty then a tolerance of 1e-6 is used.
##
## @item
## @var{maxit} is the maximum allowable number of iterations; if @var{maxit}
## is omitted or empty then a value of 20 is used.
##
## @item
## @var{m} = @var{m1} * @var{m2} is the (left) preconditioning matrix, so that
## the iteration is (theoretically) equivalent to solving by @code{pcg}
## @w{@code{@var{P} * @var{x} = @var{m} \ @var{b}}}, with
## @w{@code{@var{P} = @var{m} \ @var{A}}}.
## Note that a proper choice of the preconditioner may dramatically
## improve the overall performance of the method. Instead of matrices
## @var{m1} and @var{m2}, the user may pass two functions which return
## the results of applying the inverse of @var{m1} and @var{m2} to
## a vector (usually this is the preferred way of using the preconditioner).
## If @var{m1} is omitted or empty @code{[]} then no preconditioning is
## applied. If @var{m2} is omitted, @var{m} = @var{m1} will be used as
## a preconditioner.
##
## @item
## @var{x0} is the initial guess. If @var{x0} is omitted or empty then the
## function sets @var{x0} to a zero vector by default.
## @end itemize
##
## The arguments which follow @var{x0} are treated as parameters, and passed in
## a proper way to any of the functions (@var{A} or @var{m}) which are passed
## to @code{pcg}. See the examples below for further details. The output
## arguments are
##
## @itemize
## @item
## @var{x} is the computed approximation to the solution of
## @w{@code{@var{A} * @var{x} = @var{b}}}.
##
## @item
## @var{flag} reports on the convergence. A value of 0 means the solution
## converged and the tolerance criterion given by @var{tol} is satisfied.
## A value of 1 means that the @var{maxit} limit for the iteration count was
## reached. A value of 3 indicates that the (preconditioned) matrix was found
## not to be positive definite.
##
## @item
## @var{relres} is the ratio of the final residual to its initial value,
## measured in the Euclidean norm.
##
## @item
## @var{iter} is the actual number of iterations performed.
##
## @item
## @var{resvec} describes the convergence history of the method.
## @code{@var{resvec}(i,1)} is the Euclidean norm of the residual, and
## @code{@var{resvec}(i,2)} is the preconditioned residual norm, after the
## (@var{i}-1)-th iteration, @code{@var{i} = 1, 2, @dots{}, @var{iter}+1}.
## The preconditioned residual norm is defined as
## @code{norm (@var{r}) ^ 2 = @var{r}' * (@var{m} \ @var{r})} where
## @code{@var{r} = @var{b} - @var{A} * @var{x}}, see also the
## description of @var{m}. If @var{eigest} is not required, only
## @code{@var{resvec}(:,1)} is returned.
##
## @item
## @var{eigest} returns the estimate for the smallest @code{@var{eigest}(1)}
## and largest @code{@var{eigest}(2)} eigenvalues of the preconditioned matrix
## @w{@code{@var{P} = @var{m} \ @var{A}}}. In particular, if no
## preconditioning is used, the estimates for the extreme eigenvalues of
## @var{A} are returned. @code{@var{eigest}(1)} is an overestimate and
## @code{@var{eigest}(2)} is an underestimate, so that
## @code{@var{eigest}(2) / @var{eigest}(1)} is a lower bound for
## @code{cond (@var{P}, 2)}, which nevertheless in the limit should
## theoretically be equal to the actual value of the condition number.
## The method which computes @var{eigest} works only for symmetric positive
## definite @var{A} and @var{m}, and the user is responsible for verifying this
## assumption.
## @end itemize
##
## Let us consider a trivial problem with a diagonal matrix (we exploit the
## sparsity of A)
##
## @example
## @group
## n = 10;
## A = diag (sparse (1:n));
## b = rand (n, 1);
## [l, u, p, q] = luinc (A, 1.e-3);
## @end group
## @end example
##
## @sc{Example 1:} Simplest use of @code{pcg}
##
## @example
## x = pcg (A, b)
## @end example
##
## @sc{Example 2:} @code{pcg} with a function which computes
## @code{@var{A} * @var{x}}
##
## @example
## @group
## function y = apply_a (x)
## y = [1:N]' .* x;
## endfunction
##
## x = pcg ("apply_a", b)
## @end group
## @end example
##
## @sc{Example 3:} @code{pcg} with a preconditioner: @var{l} * @var{u}
##
## @example
## x = pcg (A, b, 1.e-6, 500, l*u)
## @end example
##
## @sc{Example 4:} @code{pcg} with a preconditioner: @var{l} * @var{u}.
## Faster than @sc{Example 3} since lower and upper triangular matrices
## are easier to invert
##
## @example
## x = pcg (A, b, 1.e-6, 500, l, u)
## @end example
##
## @sc{Example 5:} Preconditioned iteration, with full diagnostics. The
## preconditioner (quite strange, because even the original matrix
## @var{A} is trivial) is defined as a function
##
## @example
## @group
## function y = apply_m (x)
## k = floor (length (x) - 2);
## y = x;
## y(1:k) = x(1:k) ./ [1:k]';
## endfunction
##
## [x, flag, relres, iter, resvec, eigest] = ...
## pcg (A, b, [], [], "apply_m");
## semilogy (1:iter+1, resvec);
## @end group
## @end example
##
## @sc{Example 6:} Finally, a preconditioner which depends on a
## parameter @var{k}.
##
## @example
## @group
## function y = apply_M (x, varargin)
## K = varargin@{1@};
## y = x;
## y(1:K) = x(1:K) ./ [1:K]';
## endfunction
##
## [x, flag, relres, iter, resvec, eigest] = ...
## pcg (A, b, [], [], "apply_m", [], [], 3)
## @end group
## @end example
##
## References:
##
## @enumerate
## @item
## C.T. Kelley, @cite{Iterative Methods for Linear and Nonlinear Equations},
## SIAM, 1995. (the base PCG algorithm)
##
## @item
## Y. Saad, @cite{Iterative Methods for Sparse Linear Systems},
## @nospell{PWS} 1996. (condition number estimate from PCG)
## Revised version of this book is available online at
## @url{http://www-users.cs.umn.edu/~saad/books.html}
## @end enumerate
##
## @seealso{sparse, pcr}
## @end deftypefn
## Author: Piotr Krzyzanowski <piotr.krzyzanowski@mimuw.edu.pl>
## Modified by: Vittoria Rezzonico <vittoria.rezzonico@epfl.ch>
## - Add the ability to provide the pre-conditioner as two separate matrices
function [x, flag, relres, iter, resvec, eigest] = pcg (A, b, tol, maxit, m1, m2, x0, varargin)
## M = M1*M2
if (nargin < 7 || isempty (x0))
x = zeros (size (b));
else
x = x0;
endif
if (nargin < 5 || isempty (m1))
exist_m1 = 0;
else
exist_m1 = 1;
endif
if (nargin < 6 || isempty (m2))
exist_m2 = 0;
else
exist_m2 = 1;
endif
if (nargin < 4 || isempty (maxit))
maxit = min (rows (b), 20);
endif
maxit += 2;
if (nargin < 3 || isempty (tol))
tol = 1e-6;
endif
preconditioned_residual_out = false;
if (nargout > 5)
T = zeros (maxit, maxit);
preconditioned_residual_out = true;
endif
## Assume A is positive definite.
matrix_positive_definite = true;
p = zeros (size (b));
oldtau = 1;
if (isnumeric (A))
## A is a matrix.
r = b - A*x;
else
## A should be a function.
r = b - feval (A, x, varargin{:});
endif
b_norm = norm (b);
resvec(1,1) = norm (r);
alpha = 1;
iter = 2;
while (resvec(iter-1,1) > tol * b_norm && iter < maxit)
if (exist_m1)
if (isnumeric (m1))
y = m1 \ r;
else
y = feval (m1, r, varargin{:});
endif
else
y = r;
endif
if (exist_m2)
if (isnumeric (m2))
z = m2 \ y;
else
z = feval (m2, y, varargin{:});
endif
else
z = y;
endif
tau = z' * r;
resvec(iter-1,2) = sqrt (tau);
beta = tau / oldtau;
oldtau = tau;
p = z + beta * p;
if (isnumeric (A))
## A is a matrix.
w = A * p;
else
## A should be a function.
w = feval (A, p, varargin{:});
endif
## Needed only for eigest.
oldalpha = alpha;
alpha = tau / (p'*w);
if (alpha <= 0.0)
## Negative matrix.
matrix_positive_definite = false;
endif
x += alpha * p;
r -= alpha * w;
if (nargout > 5 && iter > 2)
T(iter-1:iter, iter-1:iter) = T(iter-1:iter, iter-1:iter) + ...
[1 sqrt(beta); sqrt(beta) beta]./oldalpha;
## EVS = eig (T(2:iter-1,2:iter-1));
## fprintf (stderr,"PCG condest: %g (iteration: %d)\n", max (EVS)/min (EVS),iter);
endif
resvec(iter,1) = norm (r);
iter++;
endwhile
if (nargout > 5)
if (matrix_positive_definite)
if (iter > 3)
T = T(2:iter-2,2:iter-2);
l = eig (T);
eigest = [min(l), max(l)];
## fprintf (stderr, "pcg condest: %g\n", eigest(2)/eigest(1));
else
eigest = [NaN, NaN];
warning ("pcg: eigenvalue estimate failed: iteration converged too fast");
endif
else
eigest = [NaN, NaN];
endif
## Apply the preconditioner once more and finish with the precond
## residual.
if (exist_m1)
if (isnumeric (m1))
y = m1 \ r;
else
y = feval (m1, r, varargin{:});
endif
else
y = r;
endif
if (exist_m2)
if (isnumeric (m2))
z = m2 \ y;
else
z = feval (m2, y, varargin{:});
endif
else
z = y;
endif
resvec(iter-1,2) = sqrt (r' * z);
else
resvec = resvec(:,1);
endif
flag = 0;
relres = resvec(iter-1,1) ./ resvec(1,1);
iter -= 2;
if (iter >= maxit - 2)
flag = 1;
if (nargout < 2)
warning ("pcg: maximum number of iterations (%d) reached\n", iter);
warning ("the initial residual norm was reduced %g times.\n", ...
1.0 / relres);
endif
elseif (nargout < 2)
fprintf (stderr, "pcg: converged in %d iterations. ", iter);
fprintf (stderr, "the initial residual norm was reduced %g times.\n",...
1.0/relres);
endif
if (! matrix_positive_definite)
flag = 3;
if (nargout < 2)
warning ("pcg: matrix not positive definite?\n");
endif
endif
endfunction
%!demo
%! ## Simplest usage of pcg (see also 'help pcg')
%!
%! N = 10;
%! A = diag ([1:N]); b = rand (N, 1);
%! y = A \ b; # y is the true solution
%! x = pcg (A, b);
%! printf ("The solution relative error is %g\n", norm (x - y) / norm (y));
%!
%! ## You shouldn't be afraid if pcg issues some warning messages in this
%! ## example: watch out in the second example, why it takes N iterations
%! ## of pcg to converge to (a very accurate, by the way) solution
%!demo
%! ## Full output from pcg, except for the eigenvalue estimates
%! ## We use this output to plot the convergence history
%!
%! N = 10;
%! A = diag ([1:N]); b = rand (N, 1);
%! X = A \ b; # X is the true solution
%! [x, flag, relres, iter, resvec] = pcg (A, b);
%! printf ("The solution relative error is %g\n", norm (x - X) / norm (X));
%! title ("Convergence history");
%! semilogy ([0:iter], resvec / resvec(1), "o-g");
%! xlabel ("Iteration"); ylabel ("log(||b-Ax||/||b||)");
%! legend ("relative residual");
%!demo
%! ## Full output from pcg, including the eigenvalue estimates
%! ## Hilbert matrix is extremely ill-conditioned, so pcg WILL have problems
%!
%! N = 10;
%! A = hilb (N); b = rand (N, 1);
%! X = A \ b; # X is the true solution
%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], 200);
%! printf ("The solution relative error is %g\n", norm (x - X) / norm (X));
%! printf ("Condition number estimate is %g\n", eigest(2) / eigest(1));
%! printf ("Actual condition number is %g\n", cond (A));
%! title ("Convergence history");
%! semilogy ([0:iter], resvec, ["o-g";"+-r"]);
%! xlabel ("Iteration"); ylabel ("log(||b-Ax||)");
%! legend ("absolute residual", "absolute preconditioned residual");
%!demo
%! ## Full output from pcg, including the eigenvalue estimates
%! ## We use the 1-D Laplacian matrix for A, and cond(A) = O(N^2)
%! ## and that's the reason we need some preconditioner; here we take
%! ## a very simple and not powerful Jacobi preconditioner,
%! ## which is the diagonal of A.
%!
%! N = 100;
%! A = zeros (N, N);
%! for i = 1 : N - 1 # form 1-D Laplacian matrix
%! A(i:i+1, i:i+1) = [2 -1; -1 2];
%! endfor
%! b = rand (N, 1);
%! X = A \ b; # X is the true solution
%! maxit = 80;
%! printf ("System condition number is %g\n", cond (A));
%! ## No preconditioner: the convergence is very slow!
%!
%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit);
%! printf ("System condition number estimate is %g\n", eigest(2) / eigest(1));
%! title ("Convergence history");
%! semilogy ([0:iter], resvec(:,1), "o-g");
%! xlabel ("Iteration"); ylabel ("log(||b-Ax||)");
%! legend ("NO preconditioning: absolute residual");
%!
%! pause (1);
%! ## Test Jacobi preconditioner: it will not help much!!!
%!
%! M = diag (diag (A)); # Jacobi preconditioner
%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit, M);
%! printf ("JACOBI preconditioned system condition number estimate is %g\n", eigest(2) / eigest(1));
%! hold on;
%! semilogy ([0:iter], resvec(:,1), "o-r");
%! legend ("NO preconditioning: absolute residual", ...
%! "JACOBI preconditioner: absolute residual");
%!
%! pause (1);
%! ## Test nonoverlapping block Jacobi preconditioner: it will help much!
%!
%! M = zeros (N, N); k = 4;
%! for i = 1 : k : N # form 1-D Laplacian matrix
%! M(i:i+k-1, i:i+k-1) = A(i:i+k-1, i:i+k-1);
%! endfor
%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit, M);
%! printf ("BLOCK JACOBI preconditioned system condition number estimate is %g\n", eigest(2) / eigest(1));
%! semilogy ([0:iter], resvec(:,1), "o-b");
%! legend ("NO preconditioning: absolute residual", ...
%! "JACOBI preconditioner: absolute residual", ...
%! "BLOCK JACOBI preconditioner: absolute residual");
%! hold off;
%!test
%! ## solve small diagonal system
%!
%! N = 10;
%! A = diag ([1:N]); b = rand (N, 1);
%! X = A \ b; # X is the true solution
%! [x, flag] = pcg (A, b, [], N+1);
%! assert (norm (x - X) / norm (X), 0, 1e-10);
%! assert (flag, 0);
%!test
%! ## solve small indefinite diagonal system
%! ## despite A is indefinite, the iteration continues and converges
%! ## indefiniteness of A is detected
%!
%! N = 10;
%! A = diag([1:N] .* (-ones(1, N) .^ 2)); b = rand (N, 1);
%! X = A \ b; # X is the true solution
%! [x, flag] = pcg (A, b, [], N+1);
%! assert (norm (x - X) / norm (X), 0, 1e-10);
%! assert (flag, 3);
%!test
%! ## solve tridiagonal system, do not converge in default 20 iterations
%!
%! N = 100;
%! A = zeros (N, N);
%! for i = 1 : N - 1 # form 1-D Laplacian matrix
%! A(i:i+1, i:i+1) = [2 -1; -1 2];
%! endfor
%! b = ones (N, 1);
%! X = A \ b; # X is the true solution
%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, 1e-12);
%! assert (flag);
%! assert (relres > 1.0);
%! assert (iter, 20); # should perform max allowable default number of iterations
%!test
%! ## solve tridiagonal system with 'perfect' preconditioner
%! ## which converges in one iteration, so the eigest does not
%! ## work and issues a warning
%!
%! N = 100;
%! A = zeros (N, N);
%! for i = 1 : N - 1 # form 1-D Laplacian matrix
%! A (i:i+1, i:i+1) = [2 -1; -1 2];
%! endfor
%! b = ones (N, 1);
%! X = A \ b; # X is the true solution
%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], [], A, [], b);
%! assert (norm (x - X) / norm (X), 0, 1e-6);
%! assert (flag, 0);
%! assert (iter, 1); # should converge in one iteration
%! assert (isnan (eigest), isnan ([NaN, NaN]));
|