File: spdiags.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (94 lines) | stat: -rw-r--r-- 3,218 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
## Copyright (C) 2000-2013 Paul Kienzle
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{b}, @var{c}] =} spdiags (@var{A})
## @deftypefnx {Function File} {@var{b} =} spdiags (@var{A}, @var{c})
## @deftypefnx {Function File} {@var{b} =} spdiags (@var{v}, @var{c}, @var{A})
## @deftypefnx {Function File} {@var{b} =} spdiags (@var{v}, @var{c}, @var{m}, @var{n})
## A generalization of the function @code{diag}.  Called with a single
## input argument, the non-zero diagonals @var{c} of @var{A} are extracted.
## With two arguments the diagonals to extract are given by the vector
## @var{c}.
##
## The other two forms of @code{spdiags} modify the input matrix by
## replacing the diagonals.  They use the columns of @var{v} to replace
## the columns represented by the vector @var{c}.  If the sparse matrix
## @var{A} is defined then the diagonals of this matrix are replaced.
## Otherwise a matrix of @var{m} by @var{n} is created with the
## diagonals given by @var{v}.
##
## Negative values of @var{c} represent diagonals below the main
## diagonal, and positive values of @var{c} diagonals above the main
## diagonal.
##
## For example:
##
## @example
## @group
## spdiags (reshape (1:12, 4, 3), [-1 0 1], 5, 4)
##    @result{} 5 10  0  0
##       1  6 11  0
##       0  2  7 12
##       0  0  3  8
##       0  0  0  4
## @end group
## @end example
##
## @end deftypefn

function [A, c] = spdiags (v, c, m, n)

  if (nargin == 1 || nargin == 2)
    ## extract nonzero diagonals of v into A,c
    [nr, nc] = size (v);
    [i, j, v] = find (v);

    if (nargin == 1)
      ## c contains the active diagonals
      c = unique (j-i);
    endif
    ## FIXME: we can do this without a loop if we are clever
    offset = max (min (c, nc-nr), 0);
    A = zeros (min (nr, nc), length (c));
    for k = 1:length (c)
      idx = find (j-i == c(k));
      A(j(idx)-offset(k),k) = v(idx);
    endfor
  elseif (nargin == 3)
    ## Replace specific diagonals c of m with v,c
    [nr, nc] = size (m);
    B = spdiags (m, c);
    A = m - spdiags (B, c, nr, nc) + spdiags (v, c, nr, nc);
  else
    ## Create new matrix of size mxn using v,c
    [j, i, v] = find (v);
    offset = max (min (c(:), n-m), 0);
    j = j(:) + offset(i(:));
    i = j - c(:)(i(:));
    idx = i > 0 & i <= m & j > 0 & j <= n;
    A = sparse (i(idx), j(idx), v(idx), m, n);
  endif

endfunction


%!assert (spdiags (zeros (1,0),1,1,1), sparse (0))
%!assert (spdiags (zeros (0,1),1,1,1), sparse (0))
%!assert (spdiags ([0.5 -1 0.5], 0:2, 1, 1), sparse(0.5))