File: treelayout.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (229 lines) | stat: -rw-r--r-- 7,279 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
## Copyright (C) 2008-2013 Ivana Varekova & Radek Salac
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} treelayout (@var{tree})
## @deftypefnx {Function File} {} treelayout (@var{tree}, @var{permutation})
## treelayout lays out a tree or a forest.  The first argument @var{tree} is a
## vector of
## predecessors, optional parameter @var{permutation} is an optional postorder
## permutation.
## The complexity of the algorithm is O(n) in
## terms of time and memory requirements.
## @seealso{etreeplot, gplot, treeplot}
## @end deftypefn

function [x_coordinate, y_coordinate, height, s] = treelayout (tree, permutation)
  if (nargin < 1 || nargin > 2 || nargout > 4)
    print_usage ();
  elseif (! isvector (tree) || rows (tree) != 1 || ! isnumeric (tree)
          ||  any (tree > length (tree)) || any (tree < 0))
    error ("treelayout: the first input argument must be a vector of predecessors");
  else
    ## Make it a row vector.
    tree = tree(:)';

    ## The count of nodes of the graph.
    num_nodes = length (tree);
    ## The number of children.
    num_children = zeros (1, num_nodes + 1);

    ## Checking vector of predecessors.
    for i = 1 : num_nodes
      if (tree(i) < i)
        ## This part of graph was checked before.
        continue;
      endif

      ## Try to find cicle in this part of graph using modified Floyd's
      ## cycle-finding algorithm.
      tortoise = tree(i);
      hare = tree(tortoise);

      while (tortoise != hare)
        ## End after finding a cicle or reaching a checked part of graph.

        if (hare < i)
          ## This part of graph was checked before.
          break
        endif

        tortoise = tree(tortoise);
        ## Hare will move faster than tortoise so in cicle hare must
        ## reach tortoise.
        hare = tree(tree(hare));

      endwhile

      if (tortoise == hare)
        ## If hare reach tortoise we found circle.
        error ("treelayout: vector of predecessors has bad format");
      endif

    endfor
    ## Vector of predecessors has right format.

    for i = 1:num_nodes
      ## vec_of_child is helping vector which is used to speed up the
      ## choice of descendant nodes.

      num_children(tree(i)+1) = num_children(tree(i)+1) + 1;
    endfor

    pos = 1;
    start = zeros (1, num_nodes+1);
    xhelp = zeros (1, num_nodes+1);
    stop = zeros (1, num_nodes+1);
    for i = 1 : num_nodes + 1
      start(i) = pos;
      xhelp(i) = pos;
      pos += num_children(i);
      stop(i) = pos;
    endfor

    if (nargin == 1)
      for i = 1:num_nodes
        vec_of_child(xhelp(tree(i)+1)) = i;
        xhelp(tree(i)+1) = xhelp(tree(i)+1) + 1;
      endfor
    else
      vec_of_child = permutation;
    endif

    ## The number of "parent" (actual) node (it's descendants will be
    ## browse in the next iteration).
    par_number = 0;

    ## The x-coordinate of the left most descendant of "parent node"
    ## this value is increased in each leaf.
    left_most = 0;

    ## The level of "parent" node (root level is num_nodes).
    level = num_nodes;

    ## num_nodes - max_ht is the height of this graph.
    max_ht = num_nodes;

    ## Main stack - each item consists of two numbers - the number of
    ## node and the number it's of parent node on the top of stack
    ## there is "parent node".
    stk = [-1, 0];

    ## Number of vertices s in the top-level separator.
    s = 0;
    ## Flag which says if we are in top level separator.
    top_level = 1;
    ## The top of the stack.
    while (par_number != -1)
      if (start(par_number+1) < stop(par_number+1))
        idx = vec_of_child(start(par_number+1) : stop(par_number+1) - 1);
      else
        idx = zeros (1, 0);
      endif

      ## Add to idx the vector of parent descendants.
      stk = [stk; [idx', ones(fliplr(size(idx))) * par_number]];

      ## We are in top level separator when we have one child and the
      ## flag is 1
      if (columns (idx) == 1 && top_level == 1)
        s++;
      else
        ## We aren't in top level separator now.
        top_level = 0;
      endif
      ## If there is not any descendant of "parent node":
      if (stk(end,2) != par_number)
       left_most++;
       x_coordinate_r(par_number) = left_most;
       max_ht = min (max_ht, level);
       if (length (stk) > 1 && find ((shift (stk,1) - stk) == 0) > 1
           && stk(end,2) != stk(end-1,2))
          ## Return to the nearest branching the position to return
          ## position is the position on the stack, where should be
          ## started further search (there are two nodes which has the
          ## same parent node).

          position = (find ((shift (stk(:,2), 1) - stk(:,2)) == 0))(end) + 1;
          par_number_vec = stk(position:end,2);

          ## The vector of removed nodes (the content of stack form
          ## position to end).

          level += length (par_number_vec);

          ## The level have to be decreased.

          x_coordinate_r(par_number_vec) = left_most;
          stk(position:end,:) = [];
        endif

        ## Remove the next node from "searched branch".

        stk(end,:) = [];
        ## Choose new "parent node".
        par_number = stk(end,1);
        ## If there is another branch start to search it.
        if (par_number != -1)
          y_coordinate(par_number) = level;
          x_coordinate_l(par_number) = left_most + 1;
        endif
      else

        ## There were descendants of "parent nod" choose the last of
        ## them and go on through it.
        level--;
        par_number = stk(end,1);
        y_coordinate(par_number) = level;
        x_coordinate_l(par_number) = left_most + 1;
      endif
    endwhile

    ## Calculate the x coordinates (the known values are the position
    ## of most left and most right descendants).
    x_coordinate = (x_coordinate_l + x_coordinate_r) / 2;

    height = num_nodes - max_ht - 1;
  endif
endfunction


%!test
%! % Compute a simple tree layout
%! [x, y, h, s] = treelayout ([0, 1, 2, 2]);
%! assert (x, [1.5, 1.5, 2, 1]);
%! assert (y, [3, 2, 1, 1]);
%! assert (h, 2);
%! assert (s, 2);

%!test
%! % Compute a simple tree layout with defined postorder permutation
%! [x, y, h, s] = treelayout ([0, 1, 2, 2], [1, 2, 4, 3]);
%! assert (x, [1.5, 1.5, 1, 2]);
%! assert (y, [3, 2, 1, 1]);
%! assert (h, 2);
%! assert (s, 2);

%!test
%! % Compute a simple tree layout with defined postorder permutation
%! [x, y, h, s] = treelayout ([0, 1, 2, 2], [4, 2, 3, 1]);
%! assert (x, [0, 0, 0, 1]);
%! assert (y, [0, 0, 0, 3]);
%! assert (h, 0);
%! assert (s, 1);