1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
## Copyright (C) 2001, 2013 David Billinghurst
## Copyright (C) 2001, 2013 Paul Kienzle
## Copyright (C) 2003, 2013 Jaakko Ruohio
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{k} =} ellipke (@var{m})
## @deftypefnx {Function File} {@var{k} =} ellipke (@var{m}, @var{tol})
## @deftypefnx {Function File} {[@var{k}, @var{e}] =} ellipke (@dots{})
## Compute complete elliptic integrals of the first K(@var{m}) and second
## E(@var{m}) kind.
##
## @var{m} must be a scalar or real array with -Inf @leq{} @var{m} @leq{} 1.
##
## The optional input @var{tol} is currently ignored (@sc{matlab} uses this
## to allow a faster, less accurate approximation).
##
## Called with only one output, elliptic integrals of the first kind are
## returned.
##
## Reference: Milton Abramowitz and Irene A. Stegun,
## @cite{Handbook of Mathematical Functions}, Chapter 17, Dover, 1965.
## @seealso{ellipj}
## @end deftypefn
## Author: David Billinghurst <David.Billinghurst@riotinto.com>
## Author: Paul Kienzle <pkienzle@users.sf.net>
## Author: Jaakko Ruohio
function [k, e] = ellipke (m)
if (nargin < 1 || nargin > 2)
print_usage ();
endif
m = m(:);
if (! isreal (m))
error ("ellipke: M must be real");
elseif (any (m > 1))
error ("ellipke: M must be <= 1");
endif
k = e = zeros (size (m));
## Handle extreme values
idx_1 = (m == 1);
k(idx_1) = Inf;
e(idx_1) = 1;
idx_neginf = (m == -Inf);
k(idx_neginf) = 0;
e(idx_neginf) = Inf;
## Arithmetic-Geometric Mean (AGM) algorithm
## ( Abramowitz and Stegun, Section 17.6 )
Nmax = 16;
idx = !idx_1 & !idx_neginf;
if (any (idx))
idx_neg = find (m < 0 & !idx_neginf);
mult_k = 1./sqrt (1 - m(idx_neg));
mult_e = sqrt (1 - m(idx_neg));
m(idx_neg) = -m(idx_neg) ./ (1 - m(idx_neg));
a = ones (sum (idx), 1);
b = sqrt (1 - m(idx));
c = sqrt (m(idx));
f = 0.5;
sum = f*c.^2;
n = 2;
do
t = (a + b)/2;
c = (a - b)/2;
b = sqrt (a.*b);
a = t;
f *= 2;
sum += f*c.^2;
until (all (c./a < eps) || (++n > Nmax))
if (n >= Nmax)
error ("ellipke: algorithm did not converge in %d iterations", Nmax);
endif
k(idx) = 0.5*pi ./ a;
e(idx) = 0.5*pi*(1 - sum) ./ a;
k(idx_neg) = mult_k .* k(idx_neg);
e(idx_neg) = mult_e .* e(idx_neg);
endif
endfunction
## Test complete elliptic functions of first and second kind
## against "exact" solution from Mathematica 3.0
%!test
%! m = [0.0; 0.01; 0.1; 0.5; 0.9; 0.99; 1.0];
%! [k,e] = ellipke (m);
%!
%! k_exp = [1.5707963267948966192;
%! 1.5747455615173559527;
%! 1.6124413487202193982;
%! 1.8540746773013719184;
%! 2.5780921133481731882;
%! 3.6956373629898746778;
%! Inf ];
%! e_exp = [1.5707963267948966192;
%! 1.5668619420216682912;
%! 1.5307576368977632025;
%! 1.3506438810476755025;
%! 1.1047747327040733261;
%! 1.0159935450252239356;
%! 1.0 ];
%! assert (k, k_exp, 8*eps);
%! assert (e, e_exp, 8*eps);
## Test against A&S Table 17.1
%!test
%! m = [0:5:50]'/100;
%! k_exp = [1.570796326794897;
%! 1.591003453790792;
%! 1.612441348720219;
%! 1.635256732264580;
%! 1.659623598610528;
%! 1.685750354812596;
%! 1.713889448178791;
%! 1.744350597225613;
%! 1.777519371491253;
%! 1.813883936816983;
%! 1.854074677301372 ];
%! e_exp = [1.570796327;
%! 1.550973352;
%! 1.530757637;
%! 1.510121831;
%! 1.489035058;
%! 1.467462209;
%! 1.445363064;
%! 1.422691133;
%! 1.399392139;
%! 1.375401972;
%! 1.350643881 ];
%! [k,e] = ellipke (m);
%! assert (k, k_exp, 1e-15);
%! assert (e, e_exp, 1e-8);
## Test negative values against "exact" solution from Mathematica.
%! m = [-0.01; -1; -5; -100; -1000; -Inf];
%! [k,e] = ellipke (m);
%!
%! k_exp = [1.5668912730681963584;
%! 1.3110287771460599052;
%! 0.9555039270640439337;
%! 0.3682192486091410329;
%! 0.1530293349884987857;
%! 0];
%! e_exp = [1.5747159850169884130;
%! 1.9100988945138560089;
%! 2.8301982463458773125;
%! 10.209260919814572009;
%! 31.707204053711259719;
%! Inf ];
%! assert (k, k_exp, 8*eps);
%! assert (e, e_exp, 8*eps (e_exp));
## Test input validation
%!error ellipke ()
%!error ellipke (1,2,3)
|