File: ellipke.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (178 lines) | stat: -rw-r--r-- 5,162 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
## Copyright (C) 2001, 2013 David Billinghurst
## Copyright (C) 2001, 2013 Paul Kienzle
## Copyright (C) 2003, 2013 Jaakko Ruohio
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{k} =} ellipke (@var{m})
## @deftypefnx {Function File} {@var{k} =} ellipke (@var{m}, @var{tol})
## @deftypefnx {Function File} {[@var{k}, @var{e}] =} ellipke (@dots{})
## Compute complete elliptic integrals of the first K(@var{m}) and second
## E(@var{m}) kind.
##
## @var{m} must be a scalar or real array with -Inf @leq{} @var{m} @leq{} 1.
##
## The optional input @var{tol} is currently ignored (@sc{matlab} uses this
## to allow a faster, less accurate approximation).
##
## Called with only one output, elliptic integrals of the first kind are
## returned.
##
## Reference: Milton Abramowitz and Irene A. Stegun,
## @cite{Handbook of Mathematical Functions}, Chapter 17, Dover, 1965.
## @seealso{ellipj}
## @end deftypefn

## Author: David Billinghurst <David.Billinghurst@riotinto.com>
## Author: Paul Kienzle <pkienzle@users.sf.net>
## Author: Jaakko Ruohio

function [k, e] = ellipke (m)

  if (nargin < 1 || nargin > 2)
    print_usage ();
  endif

  m = m(:);
  if (! isreal (m))
    error ("ellipke: M must be real");
  elseif (any (m > 1))
    error ("ellipke: M must be <= 1");
  endif

  k = e = zeros (size (m));

  ## Handle extreme values
  idx_1 = (m == 1);
  k(idx_1) = Inf;
  e(idx_1) = 1;

  idx_neginf = (m == -Inf);
  k(idx_neginf) = 0;
  e(idx_neginf) = Inf;

  ## Arithmetic-Geometric Mean (AGM) algorithm
  ## ( Abramowitz and Stegun, Section 17.6 )
  Nmax = 16;
  idx = !idx_1 & !idx_neginf;
  if (any (idx))
    idx_neg = find (m < 0 & !idx_neginf);
    mult_k = 1./sqrt (1 - m(idx_neg));
    mult_e = sqrt (1 - m(idx_neg));
    m(idx_neg) = -m(idx_neg) ./ (1 - m(idx_neg));
    a = ones (sum (idx), 1);
    b = sqrt (1 - m(idx));
    c = sqrt (m(idx));
    f = 0.5;
    sum = f*c.^2;
    n = 2;
    do
      t = (a + b)/2;
      c = (a - b)/2;
      b = sqrt (a.*b);
      a = t;
      f *= 2;
      sum += f*c.^2;
    until (all (c./a < eps) || (++n > Nmax))
    if (n >= Nmax)
      error ("ellipke: algorithm did not converge in %d iterations", Nmax);
    endif
    k(idx) = 0.5*pi ./ a;
    e(idx) = 0.5*pi*(1 - sum) ./ a;
    k(idx_neg) = mult_k .* k(idx_neg);
    e(idx_neg) = mult_e .* e(idx_neg);
  endif

endfunction


## Test complete elliptic functions of first and second kind
## against "exact" solution from Mathematica 3.0
%!test
%! m = [0.0; 0.01; 0.1; 0.5; 0.9; 0.99; 1.0];
%! [k,e] = ellipke (m);
%!
%! k_exp = [1.5707963267948966192;
%!          1.5747455615173559527;
%!          1.6124413487202193982;
%!          1.8540746773013719184;
%!          2.5780921133481731882;
%!          3.6956373629898746778;
%!          Inf ];
%! e_exp = [1.5707963267948966192;
%!          1.5668619420216682912;
%!          1.5307576368977632025;
%!          1.3506438810476755025;
%!          1.1047747327040733261;
%!          1.0159935450252239356;
%!          1.0 ];
%! assert (k, k_exp, 8*eps);
%! assert (e, e_exp, 8*eps);

## Test against A&S Table 17.1
%!test
%! m = [0:5:50]'/100;
%! k_exp = [1.570796326794897;
%!          1.591003453790792;
%!          1.612441348720219;
%!          1.635256732264580;
%!          1.659623598610528;
%!          1.685750354812596;
%!          1.713889448178791;
%!          1.744350597225613;
%!          1.777519371491253;
%!          1.813883936816983;
%!          1.854074677301372 ];
%! e_exp = [1.570796327;
%!          1.550973352;
%!          1.530757637;
%!          1.510121831;
%!          1.489035058;
%!          1.467462209;
%!          1.445363064;
%!          1.422691133;
%!          1.399392139;
%!          1.375401972;
%!          1.350643881 ];
%! [k,e] = ellipke (m);
%! assert (k, k_exp, 1e-15);
%! assert (e, e_exp, 1e-8);

## Test negative values against "exact" solution from Mathematica.
%! m = [-0.01; -1; -5; -100; -1000; -Inf];
%! [k,e] = ellipke (m);
%!
%! k_exp = [1.5668912730681963584;
%!          1.3110287771460599052;
%!          0.9555039270640439337;
%!          0.3682192486091410329;
%!          0.1530293349884987857;
%!          0];
%! e_exp = [1.5747159850169884130;
%!          1.9100988945138560089;
%!          2.8301982463458773125;
%!          10.209260919814572009;
%!          31.707204053711259719;
%!          Inf ];
%! assert (k, k_exp, 8*eps);
%! assert (e, e_exp, 8*eps (e_exp));

## Test input validation
%!error ellipke ()
%!error ellipke (1,2,3)