1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
## Copyright (C) 2000-2013 Paul Kienzle
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{p} =} factor (@var{q})
## @deftypefnx {Function File} {[@var{p}, @var{n}] =} factor (@var{q})
##
## Return the prime factorization of @var{q}. That is,
## @code{prod (@var{p}) == @var{q}} and every element of @var{p} is a prime
## number. If @code{@var{q} == 1}, return 1.
##
## With two output arguments, return the unique primes @var{p} and
## their multiplicities. That is, @code{prod (@var{p} .^ @var{n}) ==
## @var{q}}.
##
## Implementation Note: The input @var{q} must not be greater than
## @code{bitmax} (9.0072e+15) in order to factor correctly.
## @seealso{gcd, lcm, isprime}
## @end deftypefn
## Author: Paul Kienzle
## 2002-01-28 Paul Kienzle
## * remove recursion; only check existing primes for multiplicity > 1
## * return multiplicity as suggested by Dirk Laurie
## * add error handling
function [x, n] = factor (q)
if (nargin < 1)
print_usage ();
endif
if (! isscalar (q) || q != fix (q))
error ("factor: Q must be a scalar integer");
endif
## Special case of no primes less than sqrt(q).
if (q < 4)
x = q;
n = 1;
return;
endif
q = double (q); # For the time being, calcs rely on double precision var.
qorig = q;
x = [];
## There is at most one prime greater than sqrt(q), and if it exists,
## it has multiplicity 1, so no need to consider any factors greater
## than sqrt(q) directly. [If there were two factors p1, p2 > sqrt(q),
## then q >= p1*p2 > sqrt(q)*sqrt(q) == q. Contradiction.]
p = primes (sqrt (q));
while (q > 1)
## Find prime factors in remaining q.
p = p(rem (q, p) == 0);
if (isempty (p))
## Can't be reduced further, so q must itself be a prime.
p = q;
endif
x = [x, p];
## Reduce q.
q /= prod (p);
endwhile
x = sort (x);
## Verify algorithm was succesful
q = prod (x);
if (q != qorig)
error ("factor: Input Q too large to factor");
elseif (q > bitmax)
warning ("factor: Input Q too large. Answer is unreliable");
endif
## Determine muliplicity.
if (nargout > 1)
idx = find ([0, x] != [x, 0]);
x = x(idx(1:length (idx)-1));
n = diff (idx);
endif
endfunction
%!assert (factor (1), 1)
%!test
%! for i = 2:20
%! p = factor (i);
%! assert (prod (p), i);
%! assert (all (isprime (p)));
%! [p,n] = factor (i);
%! assert (prod (p.^n), i);
%! assert (all ([0,p] != [p,0]));
%! endfor
%% Test input validation
%!error factor ()
%!error <Q must be a scalar integer> factor ([1,2])
%!error <Q must be a scalar integer> factor (1.5)
|