File: isprime.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (89 lines) | stat: -rw-r--r-- 2,600 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
## Copyright (C) 2000-2013 Paul Kienzle
## Copyright (C) 2010 VZLU Prague
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} isprime (@var{x})
## Return a logical array which is true where the elements of @var{x} are
## prime numbers and false where they are not.
##
## If the maximum value in @var{x} is very large, then you should be using
## special purpose factorization code.
##
## @example
## @group
## isprime (1:6)
##     @result{} [0, 1, 1, 0, 1, 0]
## @end group
## @end example
## @seealso{primes, factor, gcd, lcm}
## @end deftypefn

function t = isprime (x)

  if (nargin == 1)
    if (any ((x != floor (x) | x < 0)(:)))
      error ("isprime: needs positive integers");
    endif
    maxn = max (x(:));
    ## generate prime table of suitable length.
    maxp = min (maxn, max (sqrt (maxn), 1e7)); # FIXME: threshold not optimized.
    pr = primes (maxp);
    ## quick search for table matches.
    t = lookup (pr, x, "b");
    ## take the rest.
    m = x(x > maxp);
    if (! isempty (m))
      ## there are still possible primes. filter them out by division.
      if (maxn <= intmax ("uint32"))
        m = uint32 (m);
      elseif (maxn <= intmax ("uint64"))
        m = uint64 (m);
      else
        warning ("isprime: too large integers being tested");
      endif
      pr = cast (pr(pr <= sqrt (maxn)), class (m));
      for p = pr
        m = m(rem (m, p) != 0);
        if (length (m) < length (pr) / 10)
          break;
        endif
      endfor
      pr = pr(pr > p);
      mm = arrayfun (@(x) all (rem (x, pr)), m);
      m = m(mm);
      if (! isempty (m))
        m = cast (sort (m), class (x));
        t |= lookup (m, x, "b");
      endif
    endif

  else
    print_usage ();
  endif

endfunction


%!assert (isprime (3), true)
%!assert (isprime (4), false)
%!assert (isprime (magic (3)), logical ([0, 0, 0; 1, 1, 1; 0, 0, 1]))

%!error isprime ()
%!error isprime (1, 2)