1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
## Copyright (C) 2000-2013 Paul Kienzle
## Copyright (C) 2010 VZLU Prague
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} isprime (@var{x})
## Return a logical array which is true where the elements of @var{x} are
## prime numbers and false where they are not.
##
## If the maximum value in @var{x} is very large, then you should be using
## special purpose factorization code.
##
## @example
## @group
## isprime (1:6)
## @result{} [0, 1, 1, 0, 1, 0]
## @end group
## @end example
## @seealso{primes, factor, gcd, lcm}
## @end deftypefn
function t = isprime (x)
if (nargin == 1)
if (any ((x != floor (x) | x < 0)(:)))
error ("isprime: needs positive integers");
endif
maxn = max (x(:));
## generate prime table of suitable length.
maxp = min (maxn, max (sqrt (maxn), 1e7)); # FIXME: threshold not optimized.
pr = primes (maxp);
## quick search for table matches.
t = lookup (pr, x, "b");
## take the rest.
m = x(x > maxp);
if (! isempty (m))
## there are still possible primes. filter them out by division.
if (maxn <= intmax ("uint32"))
m = uint32 (m);
elseif (maxn <= intmax ("uint64"))
m = uint64 (m);
else
warning ("isprime: too large integers being tested");
endif
pr = cast (pr(pr <= sqrt (maxn)), class (m));
for p = pr
m = m(rem (m, p) != 0);
if (length (m) < length (pr) / 10)
break;
endif
endfor
pr = pr(pr > p);
mm = arrayfun (@(x) all (rem (x, pr)), m);
m = m(mm);
if (! isempty (m))
m = cast (sort (m), class (x));
t |= lookup (m, x, "b");
endif
endif
else
print_usage ();
endif
endfunction
%!assert (isprime (3), true)
%!assert (isprime (4), false)
%!assert (isprime (magic (3)), logical ([0, 0, 0; 1, 1, 1; 0, 0, 1]))
%!error isprime ()
%!error isprime (1, 2)
|