1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
## Copyright (C) 2001-2013 Rolf Fabian and Paul Kienzle
## Copyright (C) 2008 Jaroslav Hajek
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{c} =} nchoosek (@var{n}, @var{k})
## @deftypefnx {Function File} {@var{c} =} nchoosek (@var{set}, @var{k})
##
## Compute the binomial coefficient or all combinations of a set of items.
##
## If @var{n} is a scalar then calculate the binomial coefficient
## of @var{n} and @var{k} which is defined as
## @tex
## $$
## {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}
## = {n! \over k! (n-k)!}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## / \
## | n | n (n-1) (n-2) @dots{} (n-k+1) n!
## | | = ------------------------- = ---------
## | k | k! k! (n-k)!
## \ /
## @end group
## @end example
##
## @end ifnottex
## @noindent
## This is the number of combinations of @var{n} items taken in groups of
## size @var{k}.
##
## If the first argument is a vector, @var{set}, then generate all
## combinations of the elements of @var{set}, taken @var{k} at a time, with
## one row per combination. The result @var{c} has @var{k} columns and
## @w{@code{nchoosek (length (@var{set}), @var{k})}} rows.
##
## For example:
##
## How many ways can three items be grouped into pairs?
##
## @example
## @group
## nchoosek (3, 2)
## @result{} 3
## @end group
## @end example
##
## What are the possible pairs?
##
## @example
## @group
## nchoosek (1:3, 2)
## @result{} 1 2
## 1 3
## 2 3
## @end group
## @end example
##
## @code{nchoosek} works only for non-negative, integer arguments. Use
## @code{bincoeff} for non-integer and negative scalar arguments, or for
## computing many binomial coefficients at once with vector inputs
## for @var{n} or @var{k}.
##
## @seealso{bincoeff, perms}
## @end deftypefn
## Author: Rolf Fabian <fabian@tu-cottbus.de>
## Author: Paul Kienzle <pkienzle@users.sf.net>
## Author: Jaroslav Hajek
function A = nchoosek (v, k)
if (nargin != 2
|| !isnumeric (k) || !isnumeric (v)
|| !isscalar (k) || ! (isscalar (v) || isvector (v)))
print_usage ();
endif
if (k < 0 || k != fix (k)
|| (isscalar (v) && (v < k || v < 0 || v != fix (v))))
error ("nchoosek: args are non-negative integers with V not less than K");
endif
n = length (v);
if (n == 1)
## Improve precision at next step.
k = min (k, v-k);
A = round (prod ((v-k+1:v)./(1:k)));
if (A*2*k*eps >= 0.5)
warning ("nchoosek", "nchoosek: possible loss of precision");
endif
elseif (k == 0)
A = [];
elseif (k == 1)
A = v(:);
elseif (k == n)
A = v(:).';
elseif (k > n)
A = zeros (0, k, class (v));
elseif (k == 2)
## Can do it without transpose.
x = repelems (v(1:n-1), [1:n-1; n-1:-1:1]).';
y = cat (1, cellslices (v(:), 2:n, n*ones (1, n-1)){:});
A = [x, y];
elseif (k < n)
v = v(:).';
A = v(k:n);
l = 1:n-k+1;
for j = 2:k
c = columns (A);
cA = cellslices (A, l, c*ones (1, n-k+1), 2);
l = c-l+1;
b = repelems (v(k-j+1:n-j+1), [1:n-k+1; l]);
A = [b; cA{:}];
l = cumsum (l);
l = [1, 1 + l(1:n-k)];
endfor
clear cA b;
A = A.';
endif
endfunction
%!assert (nchoosek (80,10), bincoeff (80,10))
%!assert (nchoosek (1:5,3), [1:3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2:4;2,3,5;2,4,5;3:5])
%% Test input validation
%!warning nchoosek (100,45);
%!error nchoosek ("100", 45)
%!error nchoosek (100, "45")
%!error nchoosek (100, ones (2,2))
%!error nchoosek (repmat (100, [2 2]), 45)
%!error nchoosek (100, -45)
%!error nchoosek (100, 45.5)
%!error nchoosek (100, 145)
%!error nchoosek (-100, 45)
%!error nchoosek (100.5, 45)
|