File: nchoosek.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (157 lines) | stat: -rw-r--r-- 4,416 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
## Copyright (C) 2001-2013 Rolf Fabian and Paul Kienzle
## Copyright (C) 2008 Jaroslav Hajek
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{c} =} nchoosek (@var{n}, @var{k})
## @deftypefnx {Function File} {@var{c} =} nchoosek (@var{set}, @var{k})
##
## Compute the binomial coefficient or all combinations of a set of items.
##
## If @var{n} is a scalar then calculate the binomial coefficient
## of @var{n} and @var{k} which is defined as
## @tex
## $$
##  {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}
##                = {n! \over k! (n-k)!}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##  /   \
##  | n |    n (n-1) (n-2) @dots{} (n-k+1)       n!
##  |   |  = ------------------------- =  ---------
##  | k |               k!                k! (n-k)!
##  \   /
## @end group
## @end example
##
## @end ifnottex
## @noindent
## This is the number of combinations of @var{n} items taken in groups of
## size @var{k}.
##
## If the first argument is a vector, @var{set}, then generate all
## combinations of the elements of @var{set}, taken @var{k} at a time, with
## one row per combination.  The result @var{c} has @var{k} columns and
## @w{@code{nchoosek (length (@var{set}), @var{k})}} rows.
##
## For example:
##
## How many ways can three items be grouped into pairs?
##
## @example
## @group
## nchoosek (3, 2)
##    @result{} 3
## @end group
## @end example
##
## What are the possible pairs?
##
## @example
## @group
## nchoosek (1:3, 2)
##    @result{}  1   2
##        1   3
##        2   3
## @end group
## @end example
##
## @code{nchoosek} works only for non-negative, integer arguments.  Use
## @code{bincoeff} for non-integer and negative scalar arguments, or for
## computing many binomial coefficients at once with vector inputs
## for @var{n} or @var{k}.
##
## @seealso{bincoeff, perms}
## @end deftypefn

## Author: Rolf Fabian  <fabian@tu-cottbus.de>
## Author: Paul Kienzle <pkienzle@users.sf.net>
## Author: Jaroslav Hajek

function A = nchoosek (v, k)

  if (nargin != 2
      || !isnumeric (k) || !isnumeric (v)
      || !isscalar (k) || ! (isscalar (v) || isvector (v)))
    print_usage ();
  endif
  if (k < 0 || k != fix (k)
      || (isscalar (v) && (v < k || v < 0 || v != fix (v))))
    error ("nchoosek: args are non-negative integers with V not less than K");
  endif

  n = length (v);

  if (n == 1)
    ## Improve precision at next step.
    k = min (k, v-k);
    A = round (prod ((v-k+1:v)./(1:k)));
    if (A*2*k*eps >= 0.5)
      warning ("nchoosek", "nchoosek: possible loss of precision");
    endif
  elseif (k == 0)
    A = [];
  elseif (k == 1)
    A = v(:);
  elseif (k == n)
    A = v(:).';
  elseif (k > n)
    A = zeros (0, k, class (v));
  elseif (k == 2)
    ## Can do it without transpose.
    x = repelems (v(1:n-1), [1:n-1; n-1:-1:1]).';
    y = cat (1, cellslices (v(:), 2:n, n*ones (1, n-1)){:});
    A = [x, y];
  elseif (k < n)
    v = v(:).';
    A = v(k:n);
    l = 1:n-k+1;
    for j = 2:k
      c = columns (A);
      cA = cellslices (A, l, c*ones (1, n-k+1), 2);
      l = c-l+1;
      b = repelems (v(k-j+1:n-j+1), [1:n-k+1; l]);
      A = [b; cA{:}];
      l = cumsum (l);
      l = [1, 1 + l(1:n-k)];
    endfor
    clear cA b;
    A = A.';
  endif
endfunction


%!assert (nchoosek (80,10), bincoeff (80,10))
%!assert (nchoosek (1:5,3), [1:3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2:4;2,3,5;2,4,5;3:5])

%% Test input validation
%!warning nchoosek (100,45);
%!error nchoosek ("100", 45)
%!error nchoosek (100, "45")
%!error nchoosek (100, ones (2,2))
%!error nchoosek (repmat (100, [2 2]), 45)
%!error nchoosek (100, -45)
%!error nchoosek (100, 45.5)
%!error nchoosek (100, 145)
%!error nchoosek (-100, 45)
%!error nchoosek (100.5, 45)