File: cov.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (172 lines) | stat: -rw-r--r-- 4,661 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
## Copyright (C) 1995-2013 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} cov (@var{x})
## @deftypefnx {Function File} {} cov (@var{x}, @var{opt})
## @deftypefnx {Function File} {} cov (@var{x}, @var{y})
## @deftypefnx {Function File} {} cov (@var{x}, @var{y}, @var{opt})
## Compute the covariance matrix.
##
## If each row of @var{x} and @var{y} is an observation, and each column is
## a variable, then the @w{(@var{i}, @var{j})-th} entry of
## @code{cov (@var{x}, @var{y})} is the covariance between the @var{i}-th
## variable in @var{x} and the @var{j}-th variable in @var{y}.
## @tex
## $$
## \sigma_{ij} = {1 \over N-1} \sum_{i=1}^N (x_i - \bar{x})(y_i - \bar{y})
## $$
## where $\bar{x}$ and $\bar{y}$ are the mean values of $x$ and $y$.
## @end tex
## @ifnottex
##
## @example
## cov (x) = 1/N-1 * SUM_i (x(i) - mean(x)) * (y(i) - mean(y))
## @end example
##
## @end ifnottex
##
## If called with one argument, compute @code{cov (@var{x}, @var{x})}, the
## covariance between the columns of @var{x}.
##
## The argument @var{opt} determines the type of normalization to use.
## Valid values are
##
## @table @asis
## @item 0:
##   normalize with @math{N-1}, provides the best unbiased estimator of the
## covariance [default]
##
## @item 1:
##   normalize with @math{N}, this provides the second moment around the mean
## @end table
##
## @sc{matlab} compatibility: Octave always computes the covariance matrix.
## For two inputs, however, @sc{matlab} will calculate
## @code{cov (@var{x}(:), @var{y}(:))} whenever the number of elements in
## @var{x} and @var{y} are equal.  This will result in a scalar rather than
## a matrix output.  Code relying on this odd definition will need to be
## changed when running in Octave.
## @seealso{corr}
## @end deftypefn

## Author: KH <Kurt.Hornik@wu-wien.ac.at>
## Description: Compute covariances

function c = cov (x, y = [], opt = 0)

  if (nargin < 1 || nargin > 3)
    print_usage ();
  endif

  if (   ! (isnumeric (x) || islogical (x))
      || ! (isnumeric (y) || islogical (y)))
    error ("cov: X and Y must be numeric matrices or vectors");
  endif

  if (ndims (x) != 2 || ndims (y) != 2)
    error ("cov: X and Y must be 2-D matrices or vectors");
  endif

  if (nargin == 2 && isscalar (y))
    opt = y;
  endif

  if (opt != 0 && opt != 1)
    error ("cov: normalization OPT must be 0 or 1");
  endif

  ## Special case, scalar has zero covariance
  if (isscalar (x))
    if (isa (x, "single"))
      c = single (0);
    else
      c = 0;
    endif
    return;
  endif

  if (isrow (x))
    x = x.';
  endif
  n = rows (x);

  if (nargin == 1 || isscalar (y))
    x = center (x, 1);
    c = conj (x' * x / (n - 1 + opt));
  else
    if (isrow (y))
      y = y.';
    endif
    if (rows (y) != n)
      error ("cov: X and Y must have the same number of observations");
    endif
    x = center (x, 1);
    y = center (y, 1);
    c = conj (x' * y / (n - 1 + opt));
  endif

endfunction


%!test
%! x = rand (10);
%! cx1 = cov (x);
%! cx2 = cov (x, x);
%! assert (size (cx1) == [10, 10] && size (cx2) == [10, 10]);
%! assert (cx1, cx2, 1e1*eps);

%!test
%! x = [1:3]';
%! y = [3:-1:1]';
%! assert (cov (x, y), -1, 5*eps);
%! assert (cov (x, flipud (y)), 1, 5*eps);
%! assert (cov ([x, y]), [1 -1; -1 1], 5*eps);

%!test
%! x = single ([1:3]');
%! y = single ([3:-1:1]');
%! assert (cov (x, y), single (-1), 5*eps);
%! assert (cov (x, flipud (y)), single (1), 5*eps);
%! assert (cov ([x, y]), single ([1 -1; -1 1]), 5*eps);

%!test
%! x = [1:5];
%! c = cov (x);
%! assert (isscalar (c));
%! assert (c, 2.5);

%!assert (cov (5), 0)
%!assert (cov (single (5)), single (0))

%!test
%! x = [1:5];
%! c = cov (x, 0);
%! assert (c, 2.5);
%! c = cov (x, 1);
%! assert (c, 2);

%% Test input validation
%!error cov ()
%!error cov (1, 2, 3, 4)
%!error cov ([1; 2], ["A", "B"])
%!error cov (ones (2,2,2))
%!error cov (ones (2,2), ones (2,2,2))
%!error cov (1, 3)
%!error cov (ones (2,2), ones (3,2))