1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
## Copyright (C) 1995-2013 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} cov (@var{x})
## @deftypefnx {Function File} {} cov (@var{x}, @var{opt})
## @deftypefnx {Function File} {} cov (@var{x}, @var{y})
## @deftypefnx {Function File} {} cov (@var{x}, @var{y}, @var{opt})
## Compute the covariance matrix.
##
## If each row of @var{x} and @var{y} is an observation, and each column is
## a variable, then the @w{(@var{i}, @var{j})-th} entry of
## @code{cov (@var{x}, @var{y})} is the covariance between the @var{i}-th
## variable in @var{x} and the @var{j}-th variable in @var{y}.
## @tex
## $$
## \sigma_{ij} = {1 \over N-1} \sum_{i=1}^N (x_i - \bar{x})(y_i - \bar{y})
## $$
## where $\bar{x}$ and $\bar{y}$ are the mean values of $x$ and $y$.
## @end tex
## @ifnottex
##
## @example
## cov (x) = 1/N-1 * SUM_i (x(i) - mean(x)) * (y(i) - mean(y))
## @end example
##
## @end ifnottex
##
## If called with one argument, compute @code{cov (@var{x}, @var{x})}, the
## covariance between the columns of @var{x}.
##
## The argument @var{opt} determines the type of normalization to use.
## Valid values are
##
## @table @asis
## @item 0:
## normalize with @math{N-1}, provides the best unbiased estimator of the
## covariance [default]
##
## @item 1:
## normalize with @math{N}, this provides the second moment around the mean
## @end table
##
## @sc{matlab} compatibility: Octave always computes the covariance matrix.
## For two inputs, however, @sc{matlab} will calculate
## @code{cov (@var{x}(:), @var{y}(:))} whenever the number of elements in
## @var{x} and @var{y} are equal. This will result in a scalar rather than
## a matrix output. Code relying on this odd definition will need to be
## changed when running in Octave.
## @seealso{corr}
## @end deftypefn
## Author: KH <Kurt.Hornik@wu-wien.ac.at>
## Description: Compute covariances
function c = cov (x, y = [], opt = 0)
if (nargin < 1 || nargin > 3)
print_usage ();
endif
if ( ! (isnumeric (x) || islogical (x))
|| ! (isnumeric (y) || islogical (y)))
error ("cov: X and Y must be numeric matrices or vectors");
endif
if (ndims (x) != 2 || ndims (y) != 2)
error ("cov: X and Y must be 2-D matrices or vectors");
endif
if (nargin == 2 && isscalar (y))
opt = y;
endif
if (opt != 0 && opt != 1)
error ("cov: normalization OPT must be 0 or 1");
endif
## Special case, scalar has zero covariance
if (isscalar (x))
if (isa (x, "single"))
c = single (0);
else
c = 0;
endif
return;
endif
if (isrow (x))
x = x.';
endif
n = rows (x);
if (nargin == 1 || isscalar (y))
x = center (x, 1);
c = conj (x' * x / (n - 1 + opt));
else
if (isrow (y))
y = y.';
endif
if (rows (y) != n)
error ("cov: X and Y must have the same number of observations");
endif
x = center (x, 1);
y = center (y, 1);
c = conj (x' * y / (n - 1 + opt));
endif
endfunction
%!test
%! x = rand (10);
%! cx1 = cov (x);
%! cx2 = cov (x, x);
%! assert (size (cx1) == [10, 10] && size (cx2) == [10, 10]);
%! assert (cx1, cx2, 1e1*eps);
%!test
%! x = [1:3]';
%! y = [3:-1:1]';
%! assert (cov (x, y), -1, 5*eps);
%! assert (cov (x, flipud (y)), 1, 5*eps);
%! assert (cov ([x, y]), [1 -1; -1 1], 5*eps);
%!test
%! x = single ([1:3]');
%! y = single ([3:-1:1]');
%! assert (cov (x, y), single (-1), 5*eps);
%! assert (cov (x, flipud (y)), single (1), 5*eps);
%! assert (cov ([x, y]), single ([1 -1; -1 1]), 5*eps);
%!test
%! x = [1:5];
%! c = cov (x);
%! assert (isscalar (c));
%! assert (c, 2.5);
%!assert (cov (5), 0)
%!assert (cov (single (5)), single (0))
%!test
%! x = [1:5];
%! c = cov (x, 0);
%! assert (c, 2.5);
%! c = cov (x, 1);
%! assert (c, 2);
%% Test input validation
%!error cov ()
%!error cov (1, 2, 3, 4)
%!error cov ([1; 2], ["A", "B"])
%!error cov (ones (2,2,2))
%!error cov (ones (2,2), ones (2,2,2))
%!error cov (1, 3)
%!error cov (ones (2,2), ones (3,2))
|