1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
## Copyright (C) 1996-2013 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{beta}, @var{v}, @var{r}] =} gls (@var{y}, @var{x}, @var{o})
## Generalized least squares estimation for the multivariate model
## @tex
## $y = x b + e$
## with $\bar{e} = 0$ and cov(vec($e$)) = $(s^2)o$,
## @end tex
## @ifnottex
## @w{@math{y = x*b + e}} with @math{mean (e) = 0} and
## @math{cov (vec (e)) = (s^2) o},
## @end ifnottex
## where
## @tex
## $y$ is a $t \times p$ matrix, $x$ is a $t \times k$ matrix, $b$ is a $k
## \times p$ matrix, $e$ is a $t \times p$ matrix, and $o$ is a $tp \times
## tp$ matrix.
## @end tex
## @ifnottex
## @math{y} is a @math{t} by @math{p} matrix, @math{x} is a @math{t} by
## @math{k} matrix, @math{b} is a @math{k} by @math{p} matrix, @math{e}
## is a @math{t} by @math{p} matrix, and @math{o} is a @math{t*p} by
## @math{t*p} matrix.
## @end ifnottex
##
## @noindent
## Each row of @var{y} and @var{x} is an observation and each column a
## variable. The return values @var{beta}, @var{v}, and @var{r} are
## defined as follows.
##
## @table @var
## @item beta
## The GLS estimator for @math{b}.
##
## @item v
## The GLS estimator for @math{s^2}.
##
## @item r
## The matrix of GLS residuals, @math{r = y - x*beta}.
## @end table
## @seealso{ols}
## @end deftypefn
## Author: Teresa Twaroch <twaroch@ci.tuwien.ac.at>
## Created: May 1993
## Adapted-By: jwe
function [beta, v, r] = gls (y, x, o)
if (nargin != 3)
print_usage ();
endif
if (! (isnumeric (x) && isnumeric (y) && isnumeric (o)))
error ("gls: X, Y, and O must be numeric matrices or vectors");
endif
if (ndims (x) != 2 || ndims (y) != 2 || ndims (o) != 2)
error ("gls: X, Y and O must be 2-D matrices or vectors");
endif
[rx, cx] = size (x);
[ry, cy] = size (y);
[ro, co] = size (o);
if (rx != ry)
error ("gls: number of rows of X and Y must be equal");
endif
if (!issquare (o) || ro != ry*cy)
error ("gls: matrix O must be square matrix with rows = rows (Y) * cols (Y)");
endif
if (isinteger (x))
x = double (x);
endif
if (isinteger (y))
y = double (y);
endif
if (isinteger (o))
o = double (o);
endif
## Start of algorithm
o = o^(-1/2);
z = kron (eye (cy), x);
z = o * z;
y1 = o * reshape (y, ry*cy, 1);
u = z' * z;
r = rank (u);
if (r == cx*cy)
b = inv (u) * z' * y1;
else
b = pinv (z) * y1;
endif
beta = reshape (b, cx, cy);
if (isargout (2) || isargout (3))
r = y - x * beta;
if (isargout (2))
v = (reshape (r, ry*cy, 1))' * (o^2) * reshape (r, ry*cy, 1) / (rx*cy - r);
endif
endif
endfunction
%!test
%! x = [1:5]';
%! y = 3*x + 2;
%! x = [x, ones(5,1)];
%! o = diag (ones (5,1));
%! assert (gls (y,x,o), [3; 2], 50*eps);
%% Test input validation
%!error gls ()
%!error gls (1)
%!error gls (1, 2)
%!error gls (1, 2, 3, 4)
%!error gls ([true, true], [1, 2], ones (2))
%!error gls ([1, 2], [true, true], ones (2))
%!error gls ([1, 2], [1, 2], true (2))
%!error gls (ones (2,2,2), ones (2,2), ones (4,4))
%!error gls (ones (2,2), ones (2,2,2), ones (4,4))
%!error gls (ones (2,2), ones (2,2), ones (4,4,4))
%!error gls (ones (1,2), ones (2,2), ones (2,2))
%!error gls (ones (2,2), ones (2,2), ones (2,2))
|