File: gls.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (145 lines) | stat: -rw-r--r-- 3,940 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
## Copyright (C) 1996-2013 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{beta}, @var{v}, @var{r}] =} gls (@var{y}, @var{x}, @var{o})
## Generalized least squares estimation for the multivariate model
## @tex
## $y = x b + e$
## with $\bar{e} = 0$ and cov(vec($e$)) = $(s^2)o$,
## @end tex
## @ifnottex
## @w{@math{y = x*b + e}} with @math{mean (e) = 0} and
## @math{cov (vec (e)) = (s^2) o},
## @end ifnottex
##  where
## @tex
## $y$ is a $t \times p$ matrix, $x$ is a $t \times k$ matrix, $b$ is a $k
## \times p$ matrix, $e$ is a $t \times p$ matrix, and $o$ is a $tp \times
## tp$ matrix.
## @end tex
## @ifnottex
## @math{y} is a @math{t} by @math{p} matrix, @math{x} is a @math{t} by
## @math{k} matrix, @math{b} is a @math{k} by @math{p} matrix, @math{e}
## is a @math{t} by @math{p} matrix, and @math{o} is a @math{t*p} by
## @math{t*p} matrix.
## @end ifnottex
##
## @noindent
## Each row of @var{y} and @var{x} is an observation and each column a
## variable.  The return values @var{beta}, @var{v}, and @var{r} are
## defined as follows.
##
## @table @var
## @item beta
## The GLS estimator for @math{b}.
##
## @item v
## The GLS estimator for @math{s^2}.
##
## @item r
## The matrix of GLS residuals, @math{r = y - x*beta}.
## @end table
## @seealso{ols}
## @end deftypefn

## Author: Teresa Twaroch <twaroch@ci.tuwien.ac.at>
## Created: May 1993
## Adapted-By: jwe

function [beta, v, r] = gls (y, x, o)

  if (nargin != 3)
    print_usage ();
  endif

  if (! (isnumeric (x) && isnumeric (y) && isnumeric (o)))
    error ("gls: X, Y, and O must be numeric matrices or vectors");
  endif

  if (ndims (x) != 2 || ndims (y) != 2 || ndims (o) != 2)
    error ("gls: X, Y and O must be 2-D matrices or vectors");
  endif

  [rx, cx] = size (x);
  [ry, cy] = size (y);
  [ro, co] = size (o);
  if (rx != ry)
    error ("gls: number of rows of X and Y must be equal");
  endif
  if (!issquare (o) || ro != ry*cy)
    error ("gls: matrix O must be square matrix with rows = rows (Y) * cols (Y)");
  endif

  if (isinteger (x))
    x = double (x);
  endif
  if (isinteger (y))
    y = double (y);
  endif
  if (isinteger (o))
    o = double (o);
  endif

  ## Start of algorithm
  o = o^(-1/2);
  z = kron (eye (cy), x);
  z = o * z;
  y1 = o * reshape (y, ry*cy, 1);
  u = z' * z;
  r = rank (u);

  if (r == cx*cy)
    b = inv (u) * z' * y1;
  else
    b = pinv (z) * y1;
  endif

  beta = reshape (b, cx, cy);

  if (isargout (2) || isargout (3))
    r = y - x * beta;
    if (isargout (2))
      v = (reshape (r, ry*cy, 1))' * (o^2) * reshape (r, ry*cy, 1) / (rx*cy - r);
    endif
  endif

endfunction


%!test
%! x = [1:5]';
%! y = 3*x + 2;
%! x = [x, ones(5,1)];
%! o = diag (ones (5,1));
%! assert (gls (y,x,o), [3; 2], 50*eps);

%% Test input validation
%!error gls ()
%!error gls (1)
%!error gls (1, 2)
%!error gls (1, 2, 3, 4)
%!error gls ([true, true], [1, 2], ones (2))
%!error gls ([1, 2], [true, true], ones (2))
%!error gls ([1, 2], [1, 2], true (2))
%!error gls (ones (2,2,2), ones (2,2), ones (4,4))
%!error gls (ones (2,2), ones (2,2,2), ones (4,4))
%!error gls (ones (2,2), ones (2,2), ones (4,4,4))
%!error gls (ones (1,2), ones (2,2), ones (2,2))
%!error gls (ones (2,2), ones (2,2), ones (2,2))