File: iqr.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (98 lines) | stat: -rw-r--r-- 2,760 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
## Copyright (C) 1995-2013 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} iqr (@var{x})
## @deftypefnx {Function File} {} iqr (@var{x}, @var{dim})
## Return the interquartile range, i.e., the difference between the upper
## and lower quartile of the input data.  If @var{x} is a matrix, do the
## above for first non-singleton dimension of @var{x}.
##
## If the optional argument @var{dim} is given, operate along this dimension.
##
## As a measure of dispersion, the interquartile range is less affected by
## outliers than either @code{range} or @code{std}.
## @seealso{range, std}
## @end deftypefn

## Author KH <Kurt.Hornik@wu-wien.ac.at>
## Description: Interquartile range

function y = iqr (x, dim)

  if (nargin != 1 && nargin != 2)
    print_usage ();
  endif

  if (! (isnumeric (x) || islogical (x)))
    error ("iqr: X must be a numeric vector or matrix");
  endif

  nd = ndims (x);
  sz = size (x);
  nel = numel (x);
  if (nargin != 2)
    ## Find the first non-singleton dimension.
    (dim = find (sz > 1, 1)) || (dim = 1);
  else
    if (!(isscalar (dim) && dim == fix (dim))
        || !(1 <= dim && dim <= nd))
      error ("iqr: DIM must be an integer and a valid dimension");
    endif
  endif

  ## This code is a bit heavy, but is needed until empirical_inv
  ## can take a matrix, rather than just a vector argument.
  n = sz(dim);
  sz(dim) = 1;
  if (isa (x, "single"))
    y = zeros (sz, "single");
  else
    y = zeros (sz);
  endif
  stride = prod (sz(1:dim-1));
  for i = 1 : nel / n;
    offset = i;
    offset2 = 0;
    while (offset > stride)
      offset -= stride;
      offset2++;
    endwhile
    offset += offset2 * stride * n;
    rng = [0 : n-1] * stride + offset;

    y(i) = diff (empirical_inv ([1/4, 3/4], x(rng)));
  endfor

endfunction


%!assert (iqr (1:101), 50)
%!assert (iqr (single (1:101)), single (50))

%%!test
%%! x = [1:100];
%%! n = iqr (x, 0:10);
%%! assert (n, [repmat(100, 1, 10), 1]);

%!error iqr ()
%!error iqr (1, 2, 3)
%!error iqr (1)
%!error iqr (['A'; 'B'])
%!error iqr (1:10, 3)