1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
## Copyright (C) 1995-2013 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} mean (@var{x})
## @deftypefnx {Function File} {} mean (@var{x}, @var{dim})
## @deftypefnx {Function File} {} mean (@var{x}, @var{opt})
## @deftypefnx {Function File} {} mean (@var{x}, @var{dim}, @var{opt})
## Compute the mean of the elements of the vector @var{x}.
## @tex
## $$ {\rm mean}(x) = \bar{x} = {1\over N} \sum_{i=1}^N x_i $$
## @end tex
## @ifnottex
##
## @example
## mean (x) = SUM_i x(i) / N
## @end example
##
## @end ifnottex
## If @var{x} is a matrix, compute the mean for each column and return them
## in a row vector.
##
## The optional argument @var{opt} selects the type of mean to compute.
## The following options are recognized:
##
## @table @asis
## @item @qcode{"a"}
## Compute the (ordinary) arithmetic mean. [default]
##
## @item @qcode{"g"}
## Compute the geometric mean.
##
## @item @qcode{"h"}
## Compute the harmonic mean.
## @end table
##
## If the optional argument @var{dim} is given, operate along this dimension.
##
## Both @var{dim} and @var{opt} are optional. If both are supplied,
## either may appear first.
## @seealso{median, mode}
## @end deftypefn
## Author: KH <Kurt.Hornik@wu-wien.ac.at>
## Description: Compute arithmetic, geometric, and harmonic mean
function y = mean (x, opt1, opt2)
if (nargin < 1 || nargin > 3)
print_usage ();
endif
if (! (isnumeric (x) || islogical (x)))
error ("mean: X must be a numeric vector or matrix");
endif
need_dim = false;
if (nargin == 1)
opt = "a";
need_dim = true;
elseif (nargin == 2)
if (ischar (opt1))
opt = opt1;
need_dim = true;
else
dim = opt1;
opt = "a";
endif
elseif (nargin == 3)
if (ischar (opt1))
opt = opt1;
dim = opt2;
elseif (ischar (opt2))
opt = opt2;
dim = opt1;
else
error ("mean: OPT must be a string");
endif
else
print_usage ();
endif
nd = ndims (x);
sz = size (x);
if (need_dim)
## Find the first non-singleton dimension.
(dim = find (sz > 1, 1)) || (dim = 1);
else
if (!(isscalar (dim) && dim == fix (dim))
|| !(1 <= dim && dim <= nd))
error ("mean: DIM must be an integer and a valid dimension");
endif
endif
n = sz(dim);
if (strcmp (opt, "a"))
y = sum (x, dim) / n;
elseif (strcmp (opt, "g"))
if (all (x(:) >= 0))
y = exp (sum (log (x), dim) ./ n);
else
error ("mean: X must not contain any negative values");
endif
elseif (strcmp (opt, "h"))
y = n ./ sum (1 ./ x, dim);
else
error ("mean: option '%s' not recognized", opt);
endif
endfunction
%!test
%! x = -10:10;
%! y = x';
%! z = [y, y+10];
%! assert (mean (x), 0);
%! assert (mean (y), 0);
%! assert (mean (z), [0, 10]);
## Test small numbers
%!assert (mean (repmat (0.1,1,1000), "g"), 0.1, 20*eps)
%!assert (mean (magic (3), 1), [5, 5, 5])
%!assert (mean (magic (3), 2), [5; 5; 5])
%!assert (mean ([2 8], "g"), 4)
%!assert (mean ([4 4 2], "h"), 3)
%!assert (mean (logical ([1 0 1 1])), 0.75)
%!assert (mean (single ([1 0 1 1])), single (0.75))
%% Test input validation
%!error mean ()
%!error mean (1, 2, 3, 4)
%!error mean ({1:5})
%!error mean (1, 2, 3)
%!error mean (1, ones (2,2))
%!error mean (1, 1.5)
%!error mean (1, 0)
%!error mean (1, 3)
%!error mean (1, "b")
|