1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
## Copyright (C) 1995-2013 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} moment (@var{x}, @var{p})
## @deftypefnx {Function File} {} moment (@var{x}, @var{p}, @var{type})
## @deftypefnx {Function File} {} moment (@var{x}, @var{p}, @var{dim})
## @deftypefnx {Function File} {} moment (@var{x}, @var{p}, @var{type}, @var{dim})
## @deftypefnx {Function File} {} moment (@var{x}, @var{p}, @var{dim}, @var{type})
## Compute the @var{p}-th central moment of the vector @var{x}.
##
## @tex
## $$
## {\sum_{i=1}^N (x_i - \bar{x})^p \over N}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## 1/N SUM_i (x(i) - mean(x))^p
## @end group
## @end example
##
## @end ifnottex
##
## If @var{x} is a matrix, return the row vector containing the @var{p}-th
## central moment of each column.
##
## The optional string @var{type} specifies the type of moment to be computed.
## Valid options are:
##
## @table @asis
## @item @qcode{"c"}
## Central Moment (default).
##
## @item @qcode{"a"}
## @itemx @qcode{"ac"}
## Absolute Central Moment. The moment about the mean ignoring sign
## defined as
## @tex
## $$
## {\sum_{i=1}^N {\left| x_i - \bar{x} \right|}^p \over N}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## 1/N SUM_i (abs (x(i) - mean(x)))^p
## @end group
## @end example
##
## @end ifnottex
##
## @item @qcode{"r"}
## Raw Moment. The moment about zero defined as
##
## @tex
## $$
## {\rm moment} (x) = { \sum_{i=1}^N {x_i}^p \over N }
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## moment (x) = 1/N SUM_i x(i)^p
## @end group
## @end example
##
## @end ifnottex
##
## @item @nospell{@qcode{"ar"}}
## Absolute Raw Moment. The moment about zero ignoring sign defined as
## @tex
## $$
## {\sum_{i=1}^N {\left| x_i \right|}^p \over N}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## 1/N SUM_i ( abs (x(i)) )^p
## @end group
## @end example
##
## @end ifnottex
## @end table
## If the optional argument @var{dim} is given, operate along this dimension.
##
## If both @var{type} and @var{dim} are given they may appear in any order.
## @seealso{var, skewness, kurtosis}
## @end deftypefn
## Can easily be made to work for continuous distributions (using quad)
## as well, but how does the general case work?
## Author: KH <Kurt.Hornik@wu-wien.ac.at>
## Description: Compute moments
function m = moment (x, p, opt1, opt2)
if (nargin < 2 || nargin > 4)
print_usage ();
endif
if (! (isnumeric (x) || islogical (x)) || isempty (x))
error ("moment: X must be a non-empty numeric matrix or vector");
endif
if (! (isnumeric (p) && isscalar (p)))
error ("moment: P must be a numeric scalar");
endif
need_dim = false;
if (nargin == 2)
type = "";
need_dim = true;
elseif (nargin == 3)
if (ischar (opt1))
type = opt1;
need_dim = true;
else
dim = opt1;
type = "";
endif
elseif (nargin == 4)
if (ischar (opt1))
type = opt1;
dim = opt2;
elseif (ischar (opt2))
type = opt2;
dim = opt1;
else
error ("moment: expecting TYPE to be a string");
endif
endif
nd = ndims (x);
sz = size (x);
if (need_dim)
## Find the first non-singleton dimension.
(dim = find (sz > 1, 1)) || (dim = 1);
else
if (!(isscalar (dim) && dim == fix (dim)) ||
!(1 <= dim && dim <= nd))
error ("moment: DIM must be an integer and a valid dimension");
endif
endif
n = sz(dim);
if (! any (type == "r"))
x = center (x, dim);
endif
if (any (type == "a"))
x = abs (x);
endif
m = sum (x .^ p, dim) / n;
endfunction
%!shared x
%! x = rand (10);
%!assert (moment (x,1), mean (center (x)), eps)
%!assert (moment (x,2), meansq (center (x)), eps)
%!assert (moment (x,1,2), mean (center (x, 2), 2), eps)
%!assert (moment (x,1,"a"), mean (abs (center (x))), eps)
%!assert (moment (x,1,"r"), mean (x), eps)
%!assert (moment (x,1,"ar"), mean (abs (x)), eps)
%!assert (moment (single ([1 2 3]), 1, "r"), single (2))
%% Test input validation
%!error moment ()
%!error moment (1)
%!error moment (1, 2, 3, 4, 5)
%!error <X must be a non-empty numeric matrix> moment (['A'; 'B'], 2)
%!error <X must be a non-empty numeric matrix> moment (ones (2,0,3), 2)
%!error <P must be a numeric scalar> moment (1, true)
%!error <P must be a numeric scalar> moment (1, ones (2,2))
%!error <expecting TYPE to be a string> moment (1, 2, 3, 4)
%!error <DIM must be an integer and a valid dimension> moment (1, 2, ones (2,2))
%!error <DIM must be an integer and a valid dimension> moment (1, 2, 1.5)
%!error <DIM must be an integer and a valid dimension> moment (1, 2, 4)
|