1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
## Copyright (C) 1996-2013 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{beta}, @var{sigma}, @var{r}] =} ols (@var{y}, @var{x})
## Ordinary least squares estimation for the multivariate model
## @tex
## $y = x b + e$
## with
## $\bar{e} = 0$, and cov(vec($e$)) = kron ($s, I$)
## @end tex
## @ifnottex
## @w{@math{y = x*b + e}} with
## @math{mean (e) = 0} and @math{cov (vec (e)) = kron (s, I)}.
## @end ifnottex
## where
## @tex
## $y$ is a $t \times p$ matrix, $x$ is a $t \times k$ matrix,
## $b$ is a $k \times p$ matrix, and $e$ is a $t \times p$ matrix.
## @end tex
## @ifnottex
## @math{y} is a @math{t} by @math{p} matrix, @math{x} is a @math{t} by
## @math{k} matrix, @math{b} is a @math{k} by @math{p} matrix, and
## @math{e} is a @math{t} by @math{p} matrix.
## @end ifnottex
##
## Each row of @var{y} and @var{x} is an observation and each column a
## variable.
##
## The return values @var{beta}, @var{sigma}, and @var{r} are defined as
## follows.
##
## @table @var
## @item beta
## The OLS estimator for @math{b}.
## @tex
## $beta$ is calculated directly via $(x^Tx)^{-1} x^T y$ if the matrix $x^Tx$ is
## of full rank.
## @end tex
## @ifnottex
## @var{beta} is calculated directly via @code{inv (x'*x) * x' * y} if the
## matrix @code{x'*x} is of full rank.
## @end ifnottex
## Otherwise, @code{@var{beta} = pinv (@var{x}) * @var{y}} where
## @code{pinv (@var{x})} denotes the pseudoinverse of @var{x}.
##
## @item sigma
## The OLS estimator for the matrix @var{s},
##
## @example
## @group
## @var{sigma} = (@var{y}-@var{x}*@var{beta})'
## * (@var{y}-@var{x}*@var{beta})
## / (@var{t}-rank(@var{x}))
## @end group
## @end example
##
## @item r
## The matrix of OLS residuals, @code{@var{r} = @var{y} - @var{x}*@var{beta}}.
## @end table
## @seealso{gls, pinv}
## @end deftypefn
## Author: Teresa Twaroch <twaroch@ci.tuwien.ac.at>
## Created: May 1993
## Adapted-By: jwe
function [beta, sigma, r] = ols (y, x)
if (nargin != 2)
print_usage ();
endif
if (! (isnumeric (x) && isnumeric (y)))
error ("ols: X and Y must be numeric matrices or vectors");
endif
if (ndims (x) != 2 || ndims (y) != 2)
error ("ols: X and Y must be 2-D matrices or vectors");
endif
[nr, nc] = size (x);
[ry, cy] = size (y);
if (nr != ry)
error ("ols: number of rows of X and Y must be equal");
endif
if (isinteger (x))
x = double (x);
endif
if (isinteger (y))
y = double (y);
endif
## Start of algorithm
z = x' * x;
[u, p] = chol (z);
if (p)
beta = pinv (x) * y;
else
beta = u \ (u' \ (x' * y));
endif
if (isargout (2) || isargout (3))
r = y - x * beta;
endif
if (isargout (2))
## z is of full rank, avoid the SVD in rnk
if (p == 0)
rnk = columns (z);
else
rnk = rank (z);
endif
sigma = r' * r / (nr - rnk);
endif
endfunction
%!test
%! x = [1:5]';
%! y = 3*x + 2;
%! x = [x, ones(5,1)];
%! assert (ols (y,x), [3; 2], 50*eps)
%!test
%! x = [1, 2; 3, 4];
%! y = [1; 2];
%! [b, s, r] = ols (x, y);
%! assert (b, [1.4, 2], 2*eps);
%! assert (s, [0.2, 0; 0, 0], 2*eps);
%! assert (r, [-0.4, 0; 0.2, 0], 2*eps);
%!test
%! x = [1, 2; 3, 4];
%! y = [1; 2];
%! [b, s] = ols (x, y);
%! assert (b, [1.4, 2], 2*eps);
%! assert (s, [0.2, 0; 0, 0], 2*eps);
%!test
%! x = [1, 2; 3, 4];
%! y = [1; 2];
%! b = ols (x, y);
%! assert (b, [1.4, 2], 2*eps);
%% Test input validation
%!error ols ()
%!error ols (1)
%!error ols (1, 2, 3)
%!error ols ([true, true], [1, 2])
%!error ols ([1, 2], [true, true])
%!error ols (ones (2,2,2), ones (2,2))
%!error ols (ones (2,2), ones (2,2,2))
%!error ols (ones (1,2), ones (2,2))
|