1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
## Copyright (C) 1995-2013 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{theta}, @var{beta}, @var{dev}, @var{dl}, @var{d2l}, @var{p}] =} logistic_regression (@var{y}, @var{x}, @var{print}, @var{theta}, @var{beta})
## Perform ordinal logistic regression.
##
## Suppose @var{y} takes values in @var{k} ordered categories, and let
## @code{gamma_i (@var{x})} be the cumulative probability that @var{y}
## falls in one of the first @var{i} categories given the covariate
## @var{x}. Then
##
## @example
## [theta, beta] = logistic_regression (y, x)
## @end example
##
## @noindent
## fits the model
##
## @example
## logit (gamma_i (x)) = theta_i - beta' * x, i = 1 @dots{} k-1
## @end example
##
## The number of ordinal categories, @var{k}, is taken to be the number
## of distinct values of @code{round (@var{y})}. If @var{k} equals 2,
## @var{y} is binary and the model is ordinary logistic regression. The
## matrix @var{x} is assumed to have full column rank.
##
## Given @var{y} only, @code{theta = logistic_regression (y)}
## fits the model with baseline logit odds only.
##
## The full form is
##
## @example
## @group
## [theta, beta, dev, dl, d2l, gamma]
## = logistic_regression (y, x, print, theta, beta)
## @end group
## @end example
##
## @noindent
## in which all output arguments and all input arguments except @var{y}
## are optional.
##
## Setting @var{print} to 1 requests summary information about the fitted
## model to be displayed. Setting @var{print} to 2 requests information
## about convergence at each iteration. Other values request no
## information to be displayed. The input arguments @var{theta} and
## @var{beta} give initial estimates for @var{theta} and @var{beta}.
##
## The returned value @var{dev} holds minus twice the log-likelihood.
##
## The returned values @var{dl} and @var{d2l} are the vector of first
## and the matrix of second derivatives of the log-likelihood with
## respect to @var{theta} and @var{beta}.
##
## @var{p} holds estimates for the conditional distribution of @var{y}
## given @var{x}.
## @end deftypefn
## Original for MATLAB written by Gordon K Smyth <gks@maths.uq.oz.au>,
## U of Queensland, Australia, on Nov 19, 1990. Last revision Aug 3,
## 1992.
## Author: Gordon K Smyth <gks@maths.uq.oz.au>,
## Adapted-By: KH <Kurt.Hornik@wu-wien.ac.at>
## Description: Ordinal logistic regression
## Uses the auxiliary functions logistic_regression_derivatives and
## logistic_regression_likelihood.
function [theta, beta, dev, dl, d2l, p] = logistic_regression (y, x, print, theta, beta)
## check input
y = round (vec (y));
[my, ny] = size (y);
if (nargin < 2)
x = zeros (my, 0);
endif;
[mx, nx] = size (x);
if (mx != my)
error ("logistic_regression: X and Y must have the same number of observations");
endif
## initial calculations
x = -x;
tol = 1e-6; incr = 10; decr = 2;
ymin = min (y); ymax = max (y); yrange = ymax - ymin;
z = (y * ones (1, yrange)) == ((y * 0 + 1) * (ymin : (ymax - 1)));
z1 = (y * ones (1, yrange)) == ((y * 0 + 1) * ((ymin + 1) : ymax));
z = z(:, any (z));
z1 = z1 (:, any(z1));
[mz, nz] = size (z);
## starting values
if (nargin < 3)
print = 0;
endif;
if (nargin < 4)
beta = zeros (nx, 1);
endif;
if (nargin < 5)
g = cumsum (sum (z))' ./ my;
theta = log (g ./ (1 - g));
endif;
tb = [theta; beta];
## likelihood and derivatives at starting values
[g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1);
[dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p);
epsilon = std (vec (d2l)) / 1000;
## maximize likelihood using Levenberg modified Newton's method
iter = 0;
while (abs (dl' * (d2l \ dl) / length (dl)) > tol)
iter = iter + 1;
tbold = tb;
devold = dev;
tb = tbold - d2l \ dl;
[g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1);
if ((dev - devold) / (dl' * (tb - tbold)) < 0)
epsilon = epsilon / decr;
else
while ((dev - devold) / (dl' * (tb - tbold)) > 0)
epsilon = epsilon * incr;
if (epsilon > 1e+15)
error ("logistic_regression: epsilon too large");
endif
tb = tbold - (d2l - epsilon * eye (size (d2l))) \ dl;
[g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1);
disp ("epsilon"); disp (epsilon);
endwhile
endif
[dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p);
if (print == 2)
disp ("Iteration"); disp (iter);
disp ("Deviance"); disp (dev);
disp ("First derivative"); disp (dl');
disp ("Eigenvalues of second derivative"); disp (eig (d2l)');
endif
endwhile
## tidy up output
theta = tb (1 : nz, 1);
beta = tb ((nz + 1) : (nz + nx), 1);
if (print >= 1)
printf ("\n");
printf ("Logistic Regression Results:\n");
printf ("\n");
printf ("Number of Iterations: %d\n", iter);
printf ("Deviance: %f\n", dev);
printf ("Parameter Estimates:\n");
printf (" Theta S.E.\n");
se = sqrt (diag (inv (-d2l)));
for i = 1 : nz
printf (" %8.4f %8.4f\n", tb (i), se (i));
endfor
if (nx > 0)
printf (" Beta S.E.\n");
for i = (nz + 1) : (nz + nx)
printf (" %8.4f %8.4f\n", tb (i), se (i));
endfor
endif
endif
if (nargout == 6)
if (nx > 0)
e = ((x * beta) * ones (1, nz)) + ((y * 0 + 1) * theta');
else
e = (y * 0 + 1) * theta';
endif
gamma = diff ([(y * 0), (exp (e) ./ (1 + exp (e))), (y * 0 + 1)]')';
endif
endfunction
|