1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
## Copyright (C) 1996-2013 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} manova (@var{x}, @var{g})
## Perform a one-way multivariate analysis of variance (MANOVA). The
## goal is to test whether the p-dimensional population means of data
## taken from @var{k} different groups are all equal. All data are
## assumed drawn independently from p-dimensional normal distributions
## with the same covariance matrix.
##
## The data matrix is given by @var{x}. As usual, rows are observations
## and columns are variables. The vector @var{g} specifies the
## corresponding group labels (e.g., numbers from 1 to @var{k}).
##
## The LR test statistic (Wilks' Lambda) and approximate p-values are
## computed and displayed.
## @end deftypefn
## The Hotelling-Lawley and Pillai-Bartlett test statistics are coded.
## However, they are currently disabled until they can be verified by someone
## with sufficient understanding of the algorithms. Please feel free to
## improve this.
## Author: TF <Thomas.Fuereder@ci.tuwien.ac.at>
## Adapted-By: KH <Kurt.Hornik@wu-wien.ac.at>
## Description: One-way multivariate analysis of variance (MANOVA)
function manova (x, g)
if (nargin != 2)
print_usage ();
endif
if (isvector (x))
error ("manova: X must not be a vector");
endif
[n, p] = size (x);
if (!isvector (g) || (length (g) != n))
error ("manova: G must be a vector of length rows (X)");
endif
s = sort (g);
i = find (s (2:n) > s(1:(n-1)));
k = length (i) + 1;
if (k == 1)
error ("manova: there should be at least 2 groups");
else
group_label = s ([1, (reshape (i, 1, k - 1) + 1)]);
endif
x = x - ones (n, 1) * mean (x);
SST = x' * x;
s = zeros (1, p);
SSB = zeros (p, p);
for i = 1 : k;
v = x (find (g == group_label (i)), :);
s = sum (v);
SSB = SSB + s' * s / rows (v);
endfor
n_b = k - 1;
SSW = SST - SSB;
n_w = n - k;
l = real (eig (SSB / SSW));
if (isa (l, "single"))
l (l < eps ("single")) = 0;
else
l (l < eps) = 0;
endif
## Wilks' Lambda
## =============
Lambda = prod (1 ./ (1 + l));
delta = n_w + n_b - (p + n_b + 1) / 2;
df_num = p * n_b;
W_pval_1 = 1 - chi2cdf (- delta * log (Lambda), df_num);
if (p < 3)
eta = p;
else
eta = sqrt ((p^2 * n_b^2 - 4) / (p^2 + n_b^2 - 5));
endif
df_den = delta * eta - df_num / 2 + 1;
WT = exp (- log (Lambda) / eta) - 1;
W_pval_2 = 1 - fcdf (WT * df_den / df_num, df_num, df_den);
if (0)
## Hotelling-Lawley Test
## =====================
HL = sum (l);
theta = min (p, n_b);
u = (abs (p - n_b) - 1) / 2;
v = (n_w - p - 1) / 2;
df_num = theta * (2 * u + theta + 1);
df_den = 2 * (theta * v + 1);
HL_pval = 1 - fcdf (HL * df_den / df_num, df_num, df_den);
## Pillai-Bartlett
## ===============
PB = sum (l ./ (1 + l));
df_den = theta * (2 * v + theta + 1);
PB_pval = 1 - fcdf (PB * df_den / df_num, df_num, df_den);
printf ("\n");
printf ("One-way MANOVA Table:\n");
printf ("\n");
printf ("Test Test Statistic Approximate p\n");
printf ("**************************************************\n");
printf ("Wilks %10.4f %10.9f \n", Lambda, W_pval_1);
printf (" %10.9f \n", W_pval_2);
printf ("Hotelling-Lawley %10.4f %10.9f \n", HL, HL_pval);
printf ("Pillai-Bartlett %10.4f %10.9f \n", PB, PB_pval);
printf ("\n");
endif
printf ("\n");
printf ("MANOVA Results:\n");
printf ("\n");
printf ("# of groups: %d\n", k);
printf ("# of samples: %d\n", n);
printf ("# of variables: %d\n", p);
printf ("\n");
printf ("Wilks' Lambda: %5.4f\n", Lambda);
printf ("Approximate p: %10.9f (chisquare approximation)\n", W_pval_1);
printf (" %10.9f (F approximation)\n", W_pval_2);
printf ("\n");
endfunction
|