1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
## Copyright (C) 2000-2013 Daniel Calvelo
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} dec2base (@var{d}, @var{base})
## @deftypefnx {Function File} {} dec2base (@var{d}, @var{base}, @var{len})
## Return a string of symbols in base @var{base} corresponding to
## the non-negative integer @var{d}.
##
## @example
## @group
## dec2base (123, 3)
## @result{} "11120"
## @end group
## @end example
##
## If @var{d} is a matrix or cell array, return a string matrix with one
## row per element in @var{d}, padded with leading zeros to the width of
## the largest value.
##
## If @var{base} is a string then the characters of @var{base} are used as
## the symbols for the digits of @var{d}. Space (' ') may not be used
## as a symbol.
##
## @example
## @group
## dec2base (123, "aei")
## @result{} "eeeia"
## @end group
## @end example
##
## The optional third argument, @var{len}, specifies the minimum
## number of digits in the result.
## @seealso{base2dec, dec2bin, dec2hex}
## @end deftypefn
## Author: Daniel Calvelo <dcalvelo@yahoo.com>
## Adapted-by: Paul Kienzle <pkienzle@kienzle.powernet.co.uk>
function retval = dec2base (d, base, len)
if (nargin < 2 || nargin > 3)
print_usage ();
endif
if (iscell (d))
d = cell2mat (d);
endif
## Create column vector for algorithm
if (! iscolumn (d))
d = d(:);
endif
## Treat logical as numeric for compatibility with ML
if (islogical (d))
d = double (d);
elseif (! isnumeric (d) || iscomplex (d) || any (d < 0 | d != fix (d)))
error ("dec2base: input must be real non-negative integers");
endif
symbols = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
if (ischar (base))
symbols = base;
base = length (symbols);
if (length (unique (symbols)) != base)
error ("dec2base: symbols representing digits must be unique");
endif
if (any (isspace (symbols)))
error ("dec2base: whitespace characters are not valid symbols");
endif
elseif (! isscalar (base))
error ("dec2base: cannot convert from several bases at once");
elseif (base < 2 || base > length (symbols))
error ("dec2base: BASE must be between 2 and 36, or a string of symbols");
endif
## determine number of digits required to handle all numbers, can overflow
## by 1 digit
max_len = round (log (max (max (d(:)), 1)) / log (base)) + 1;
if (nargin == 3)
max_len = max (max_len, len);
endif
## determine digits for each number
digits = zeros (length (d), max_len);
for k = max_len:-1:1
digits(:,k) = mod (d, base);
d = round ((d - digits(:,k)) / base);
endfor
## convert digits to symbols
retval = reshape (symbols(digits+1), size (digits));
## Check if the first element is the zero symbol. It seems possible
## that LEN is provided, and is less than the computed MAX_LEN and
## MAX_LEN is computed to be one larger than necessary, so we would
## have a leading zero to remove. But if LEN >= MAX_LEN, we should
## not remove any leading zeros.
if ((nargin == 2 || (nargin == 3 && max_len > len))
&& length (retval) != 1 && ! any (retval(:,1) != symbols(1)))
retval = retval(:,2:end);
endif
endfunction
%!test
%! s0 = "";
%! for n = 1:13
%! for b = 2:16
%! pp = dec2base (b^n+1, b);
%! assert (dec2base (b^n, b), ['1',s0,'0']);
%! assert (dec2base (b^n+1, b), ['1',s0,'1']);
%! endfor
%! s0 = [s0,'0'];
%! endfor
%!test
%! digits = "0123456789ABCDEF";
%! for n = 1:13
%! for b = 2:16
%! pm = dec2base (b^n-1, b);
%! assert (length (pm), n);
%! assert (all (pm == digits(b)));
%! endfor
%! endfor
%!test
%! for b = 2:16
%! assert (dec2base (0, b), '0');
%! endfor
%!assert (dec2base (0, 2, 4), "0000")
%!assert (dec2base (2^51-1, 2), ...
%! "111111111111111111111111111111111111111111111111111")
%!assert (dec2base (uint64 (2)^63-1, 16), "7FFFFFFFFFFFFFFF")
%!assert (dec2base ([1, 2; 3, 4], 2, 3), ["001"; "011"; "010"; "100"])
%!assert (dec2base ({1, 2; 3, 4}, 2, 3), ["001"; "011"; "010"; "100"])
%!test
%! a = 0:3;
%! assert (dec2base (!a, 2, 1), ["1"; "0"; "0"; "0"])
%%Test input validation
%!error dec2base ()
%!error dec2base (1)
%!error dec2base (1, 2, 3, 4)
%!error dec2base ("A")
%!error dec2base (2i)
%!error dec2base (-1)
%!error dec2base (1.1)
%!error dec2base (1, "ABA")
%!error dec2base (1, "A B")
%!error dec2base (1, ones (2))
%!error dec2base (1, 1)
%!error dec2base (1, 37)
|